
Argos: emulated hardware support to fingerprint zero-day
attacks by means of dynamic data flow analysis

Georgios Portokalidis Asia Slowinska Herbert Bos

Department of Computer Science,
Faculteit der Exacte Wetenschappen,

Vrije Universiteit Amsterdam,
De Boelelaan 1081,

1081 HV Amsterdam, Netherlands
{porto, asia, herbertb}@few.vu.nl

Keywords: Operating Systems, Security, Honeypots

Abstract

As modern operating systems and software be-
come larger and more complex, they are more likely
to contain bugs, which may allow attackers to gain il-
legitimate access. A fast and reliable mechanism to
discern and generate vaccines for such attacks is vi-
tal for the successful protection of networks and sys-
tems. In this paper we presentArgos, a containment
environment for worms as well as human orchestrated
attacks.Argosis built upon a fast x86 emulator which
tracks network data throughout execution to identify
their invalid use as jump targets, function addresses,
instructions, etc. Furthermore, system call policies
disallow the use of network data as arguments to cer-
tain calls. When an attack is detected, we perform
‘intelligent’ process- or kernel-aware logging of the
corresponding emulator state for further off-line pro-
cessing. In addition, our ownforensics shellcode is
injected to gather information about the attacked pro-
cess. By correlating the data logged by the emulator
with the data collected from the network, the gener-
ation of accurate network intrusion detection signa-
tures is made possible.

1 Introduction

The rate at which self-propagating attacks spread
across the Internet has prompted a wealth of research
in automated response systems. We have already en-
countered worms that spread across the Internet in as
little as ten minutes, and researchers claim that even
faster worms are just around the corner [1]. For such
outbreaks human intervention is too slow and auto-
mated response systems are needed. Important cri-
teria for such systems in practice are: (a) reliable

detection of a wide variety of zero-day attacks, and
(b) cost-effective deployment.

Existing automated response systems tend to in-
cur a fairly large ratio of false positives in attack de-
tection and use of signatures [2, 3, 4, 5, 6]. A large
share of false positives violates the first criterion. Al-
though these systems may play an important role in
intrusion detection systems (IDS), it is problematic to
apply them in fully automated response systems.

One approach that attempts to avoid false posi-
tives altogether is known as dynamic taint analysis.
Briefly, untrusted data from the network is tagged
and an alert is generated (only) if and when an ex-
ploit takes place, e.g., when data coming from the
network are executed. This technique proves to be
very reliable and to generate few, if any, false posi-
tives. It is used in current projects that can be cate-
gorised as (i) hardware-oriented full-system protec-
tion, and (ii) OS- and process-specific solutions in
software. These are two rather different approaches,
and each approach has important implications. For
our purposes, the two most important representatives
of these approaches are Minos [7] and Vigilante [8],
respectively.

Minos relies on hardware for cost-effective de-
ployment. Moreover, by looking at physical addresses
only, it may detect certain exploits, such as a regis-
ter spring attacks [9], but requires an awkward hack
to determine where the attack originated [10]. Also,
it cannot directly handle physical to virtual address
translation at all.

In contrast, Vigilante represents a per-process so-
lution that works with virtual addresses. Again, this is
a design decision that limits its flexibility, as it is not
able to handle DMA or memory mapping. Also, the
issue of cost-effectiveness arises as Vigilante must in-



strument individual services and does not protect the
OS kernel at all. Unfortunately, kernel attacks have
become a reality and are expected to be more com-
mon in the future [11].

In this paper we describeArgoswhich explores an-
other extreme in the design space for automated re-
sponse systems. First, like Minos we offer whole-
system protection in software by way of a modified
x86 emulator which runs our own version of dynamic
taint analysis [12]. In other words, we automatically
protect any (unmodified) OS and all its processes,
drivers, etc. Second,Argos takes into account com-
plex memory operations, such as memory mapping
and DMA (commonly ignored by other projects), and
is at the same time quite capable of handling complex
exploits (such as register springs). This is to a large
extent due to our ability to handle both virtual and
physical addresses. Third, buffer overflow and format
string / code injection exploits trigger alerts that re-
sult in extensive logging of the emulator’s state, which
along with the network data comprise the most critical
information for generating a NID signature. Fourth,
while the system is OS- and application-neutral, when
an attack is detected, we inject OS-specific forensics
shellcode. In other words, we exploit the code under
attack as the attack is happening to extract additional
information about the attack.

We focus on attacks that are orchestrated remotely
(like worms) and do not require user interaction. Ap-
proaches that take advantage of mis-configured secu-
rity policies are not addressed. Even though such at-
tacks constitute an ample security issue, they are be-
yond the scope of our work and require a different
approach. Specifically, We focus on capturing attacks
that exploit buffer overflows to inject code in order
to gain control over a host. In our opinion, it is more
useful to capture exploits, because a single exploit can
be the carrier for different attacks. Additionally, ex-
ploits are less mutable than attack payloads and may
be more easily caught even in the face of polymor-
phism.

Argosis designed as an ‘advertised honeypot’, i.e.,
a honeypot that runs real services and differs from
normal honeypots in that we don’t hide it. Rather,
we actively link to it and ‘advertise’ its IP address in
the hope of making it visible to attackers employing
hitlists rather than random IP scanning to identify vic-
tims. The price we pay for this is that unlike conven-
tional honeypots we expect to receive a fair amount of
legitimate traffic (e.g., crawlers). On the other hand,
sinceArgos is targeted as a honeypot, we do not re-
quire our solution to perform as well as unprotected
systems. Nevertheless, it should be fast enough to run
real services and have reasonable response time.

The remainder of this paper is organised as fol-
lows. Related work is discussed mainly throughout
the text. In Section 2 we describe the design ofAr-

memory

dump

(tainted data)

network data

guest OS (Windows, Linux, etc)

applications

extended dynamic 

taint analysis

Argos emulator

network

trace

forensics

1

2

2

3

Figure 1: Argos: High-Level Overview

gos. Implementation details are discussed in Sec-
tion 3. The system is evaluated in Section 4. Con-
clusions are in Section 5.

2 Design

An overview of theArgos architecture is shown
in Figure 1. The full execution path consists of
three main steps, indicated by the numbers in the fig-
ure which correspond to the circled numbers in this
section. Incoming traffic is both logged in a trace
database, and fed to the unmodified application/OS
running on our emulator1©. In the emulator we em-
ploy dynamic taint analysis to detect when a vulner-
ability is exploited to alter an application’s control
flow 2©. This is achieved by identifying illegal uses
of possibly unsafe data such as the data received from
the network [12]. There are three steps to accomplish
this:

• tag data originating from an unsafe source as
tainted;

• tracktainteddata during execution

• identify and prevent unsafe usage oftainteddata;

In other words, data originating from the network
is marked as tainted, whenever it is copied to mem-
ory or registers, the new location is tainted also, and
whenever it is used, say, as a jump target, we raise an
alarm. Thus far this is similar to approaches like [8]
and [12]. As mentioned earlier,Argos differs from
most existing projects in that we trace physical ad-
dresses rather than virtual addresses. As a result,
the memory mapping problem disappears, because all
virtual address space mappings of a certain page, refer
to the same physical address.

When a violation is detected, an alarm is raised
andArgos dumps all tainted blocks and some addi-
tional information to file, with markers specifying the
address that triggered the violation, the memory area
it was pointing to, etc. Since we have full access to the



machine, its registers and all its mappings, we are able
to translate between physical and virtual addresses as
needed. The dump therefore contains registers, phys-
ical memory blocks and specific virtual address. The
log contains enough information not just for signature
generation, but for, say, manual analysis as well.

In addition, we employ a novel technique to auto-
mate forensics on the code under attack. Recall that
Argosis OS- and application-neutral, i.e., we are able
to work out-of-the-box with any OS and application
on the IA32 instruction set architecture (no modifi-
cation or recompilation required). When an attack
is detected, we may not even know which process
is causing the alarm. To unearth additional informa-
tion about the application (e.g., process identifier, ex-
ecutable name, open files and sockets, etc.), we inject
our own shellcode to perform forensics3©. In other
words, we ‘exploit’ the code under attack with our
own shellcode. To the best of our knowledge, we are
the first to employ the means of attack (shellcode) for
defensive purposes.

3 Implementation

Argos extends theQemu[13] hardware emulator
by providing it with the means to taint and track mem-
ory, and generate memory footprints in case of a de-
tected violation.Qemuis a fast and portable dynamic
translator that emulates multiple architectures such as
x86, x86 64, POWER-PC64, etc. Unlike other em-
ulators such as Bochs [14],Qemuis not an interpreter.
Rather, entire blocks of instructions are translated and
cached so the process is not repeated if the same in-
structions are executed again. Furthermore, instead of
providing the software equivalent of a hardware sys-
tem,Qemuemploys various optimisations to improve
performance. As a result,Qemuis significantly faster
than most emulators.

Our implementation extendsQemu’s Pentium ar-
chitecture. In the remainder of this paper, it will be
referred to simply as thex86 architecture. For the
sake of clarity we will also use the terms guest and
host to distinguish between the emulated system and
the system hostingQemu.

We divide our implementation ofArgos in two
parts. The first contains our extended dynamic taint
analysis which we used both to secureQemuand to
enable it to issue alerts whenever it identifies an at-
tack. The second part covers the extraction of critical
information from the emulator and the OS.

3.1 Extended Dynamic Taint Analysis

The dynamic taint analysis inArgosresembles that
of other projects. However, there are important differ-
ences. In this section we discuss the implementation
details.

3.1.1 Tagging

An important implementation decision in taint analy-
sis concerns the granularity of the tagging. In princi-
ple, one could tag data blocks as small as a single bit,
up to chunks of 4 KB or larger. We opted for vari-
able granularity; per byte tagging of physical mem-
ory, while at the same time using a single tag for each
CPU register. Per byte tagging of memory does not
incur any additional computational costs i.e. over per
double word tagging, and provides higher accuracy.
On the other hand, per byte tagging of registers would
introduce increased complexity in register operations,
which is unacceptable. It is worth noting that altering
Argosto employ a different granularity is trivial. For
reasons of performance and to facilitate the process
of forensics at a later stage, the nature of the memory
and register tags is also different.

Register tagging There are eight general purpose
registers in thex86 architecture [15], and we allocate
a 4 B tag for each of them. The tag is used to store
the physical memory address from where the contents
of the register originate. Segment registers and the
instruction pointer register (EIP) are not tagged and
are always considereduntainted. Since they can only
be altered implicitly and because of their role, they
belong to the protected elements of the system. The
EFLAGS register is also not tagged and is considered
untainted, because it is frequently affected by opera-
tions involving untrusted data, and tagging it would
make it impossible to differentiate between malicious
and benevolent sources. By default,MMX andFPU
registers are treated similarly, althoughArgos is able
to tag them if required. We implemented tagging for
these registers as an option only, since they are in-
volved in very specific operations that are rarely, if
ever, involved in attacks. For the sake of performance,
we ignore them by default.

Memory tagging Since we do not store any addi-
tional data for physical memory tags, a binary flag
for tagging would suffice. Nevertheless, one could
also use a byte flag increasing memory consumption
in exchange for performance gains. This might seem
costly, but recall that we tagphysical rather than vir-
tual memory. While virtual memory space may be
huge (e.g.,264 on 64-bit machines) the same is not
true for physical memory, which is commonly on the
order of 512 MB - 1GB. Moreover, the guest’s ‘phys-
ical’ RAM need not correspond to the physical mem-
ory at the host, so the cost in hardware resources can
be kept fairly small. The scheme to be used can be
configured at compile time. Following, we will dis-
cuss the two tagging schemes in more detail.

A bitmap is a large array, where every byte cor-
responds to 8 bytes in memory. The indexidx of



any physical memory addresspaddr in the bitmap
can be calculated by first shifting the address right by
3 (idx = paddr ≫ 3) to locate the byte contain-
ing the bit flag (map[idx]). The individual bit flag
is retrieved by using the lower 3 bits ofpaddr (b =
map[idx]

⊕
(0x01 ≪ (paddr

⊕
0x07))). Thesize

of the bitmap is an eighth of the guest’s total address-
able physical memoryRAMSZ (size = RAMSZ

8
),

i.e. the bitmap for a guest system of 512 MB would
be 64 MB.

Similarly, a bytemap is also a large array, where
each byte corresponds to a byte in memory. The
physical addresspaddr of each byte is also the in-
dex idx in the bytemap. Its totalsize is equal to the
guest’s total addressable physical memoryRAMSZ

(size = RAMSZ).
Finally, incoming network data are marked as

tainted. Since the entire process does not involve OS
participation the tagging is performed by the virtual
NE2000 NIC emulated byQemu. OSs communi-
cate with peripherals in two ways: port I/O and mem-
ory mapped I/O.Qemu’s virtual NIC though, sup-
ports only port I/O, which inx86 architectures is
performed using instructionsIN andOUT. By instru-
menting these instructions the registers loaded with
data from theNE2000 are tagged astaintedwhile all
other port I/O operations result in clearing the desti-
nation register’s tag.

3.1.2 Tracking

Qemutranslates all guest instructions to host native
instructions by dynamically linking blocks of func-
tions that implement the corresponding operations.
Tracking tainted data involves instrumenting these
functions to manipulate the tags, as data are moved
around or altered. Besides registers and memory lo-
cations, available instruction operands include imme-
diate values, which we consider to beuntainted. We
have classified instrumented functions in the follow-
ing categories:

• 2 or 3 operand ALU operations; these are the
most common operations and includeADD,SUB,
AND, XOR, etc. If the destination operands are
not tainted, they result in copying the source
operands tags to the destination operands tags.

• Data move operations; these operations move
data from register to register, copying the
source’s tag to the destination’s tag.

• Single register operations; shift and rotate ops
belong to this category. The tag of the register
is either preserved as it is, or cleared when data
are altered in a complex way that would be ex-
tremely hard for an attacker to exploit (e.g.BCD,
rotate and bit set instructions [16] are considered
to ‘sanitise’ data).

• Memory related operations; all LOAD, STORE,
PUSH andPOP operations belong here. These
operations retrieve or store the tags from or to
memory respectively.

• FPU, MMX, or SSE operations; as explained
above, these are ignored by default (tagging of
the corresponding registers is optional inArgos),
unless their result is stored in one of the registers
we track or to memory. In these cases, the des-
tination is cleared. More advanced instructions
such asSSE2 and3DNow! are not supported
by Qemu.

• Operations that do not directly alter registers or
memory; some of these ops areNOP, JMP, etc.
For most of these we do not have to add any
instrumentation code for tracking data, but for
identifying their illegal use instead, as we de-
scribe in the following section.

Fortunately, we do not have to worry about spe-
cial instruction uses such asxor eax,eax or
sub eax, eax. These are used in abundance in
x86’s to set a register to zero, because unlike RISC
there is no zero register available.Qemumakes sure
to translate these as a separate function that moves
zero to the target register. When this function is com-
piled it follows the native architecture’s idiom of ze-
roing a register.

Modern systems provide a mechanism for pe-
ripherals to write directly to memory without con-
suming CPU cycles, namely direct memory access
(DMA). When using DMA OSs instead of reading
small chunks of data from peripherals they allocate a
larger area of memory and send its address to the pe-
ripheral, which in turn writes data directly in that area
without occupying the CPU.Qemuemulates DMA
for components such as the hard disk. Whenever a
DMA write to memory is performed inArgos, it is
intercepted and the corresponding memory tags are
cleared.

3.1.3 Preventing Invalid Uses of Tainted Data

Most of the observed attacks today gain control over a
host by redirecting control to instructions supplied by
the attacker (e.g., shellcode), or to already available
code by carefully manipulating arguments (return to
libc). For these attacks to succeed the instruction
pointer of the host must be loaded with a value sup-
plied by the attacker. In thex86 architecture, the in-
struction pointer registerEIP is loaded by the follow-
ing instructions:call, ret, andjmp. By instru-
menting these instructions to make sure that atainted
value is not loaded inEIP, we manage to identify all
attacks employing such methods. Optionally, we can
also check whether ataintedvalue is being loaded on



model specific registers (MSR) or segment registers,
but so far we have not encountered such attacks and
we are not aware of their existence.

While these measures capture a broad category of
exploits, they alone are not sufficient. For instance,
they are unable to deal with format string vulnerabil-
ities, which allow an attacker to overwrite any mem-
ory location with arbitrary data. These attacks do not
directly overwrite critical values with network data,
and might remain undetected. Therefore, we have ex-
tended dynamic taint analysis to also scan for code-
injection attacks that would not be captured other-
wise. This is easily accomplished by checking that
the memory location loaded onEIP is nottainted.

Finally, to address attacks that are based solely on
altering arguments of critical functions such as system
calls, we have instrumentedQemuto check when ar-
guments supplied to system calls likeexecve() are
tainted. To reliably implement this functionality we
require a hint about the OS being run onArgos, since
OSs use different system calls. The current version of
Argossupports this feature solely for the Linux OS.

3.2 Attack Logging

In this section we explain the wayArgos logs the
detected attacks, as well as advanced forensics.

3.2.1 Extracting Data

An identified attack can become an asset for the en-
tire network security community if we generate a sig-
nature to successfully block it at the network level.
To allow this,Argosexports the contents of ‘interest-
ing’ memory areas in the guest for off-line processing.
To reduce the amount of exported data we dynami-
cally determine whether the attack occurred in user-
or kernel-space. This is achieved by retrieving the
processor’s privilege ring bits fromQemu’s hidden
flags register. The kernel is always running on privi-
leged ring 0, so we can distinguish processes from the
kernel by looking at the ring in which we are running.

Additionally, every process is sharing its virtual
address space with the kernel. OSs accomplish this
by splitting the address space. In the case of Linux
a 3:1 split is used, meaning that three quarters of the
virtual address space are given to the process while
one quarter is assigned to the kernel. Windows on the
other hand is using a 2:2 split. The user/kernel space
split is predefined in most OS configurations, so we
are able to use static values as long as we know which
OS is being run. We take advantage of this informa-
tion to dump only relevant data.

To determine which physical memory pages are of
interest and need to be logged, we traverse the page
directory installed on the processor. Inx86 architec-
tures the physical memory address of the active page
directory is stored in control register 3 (CR3). Note

FORMAT ARCH TS

REGISTER TAGSREGISTER VALUES

TYPE

EIP REGISTER EIP ORIGIN EFLAGS

MEMORY BLOCKS

MEMORY CONTENTS

FORMAT
FLAG

SIZE PADDR VADDR
TAINTED

Figure 2: Memory dump format

that because we traverse the virtual address space of
processes, physical pages mapped to multiple virtual
addresses will be logged multiple times (one for each
mapping).

By locating all the physical pages accessible to
the process / kernel, and making sure that we do not
cross the user / kernel space split, we dump alltainted
memory areas as well as the physical page pointed to
by EIP regardless of its tags state. The structure of
the dumped data is shown in Figure 2. For each de-
tected attack the following information is exported:
the log’s format (FORMAT), the guest architecture
(ARCH could bei386 or x86 64), the type of the
attack (TYPE), the timestamp (TS), register contents
and tags (including EIP and its origin), theEFLAGS
register, and finally memory contents in blocks. Each
memory block is preceded by the following header:
the block’s format (FORMAT), a taintedflag, the size
of the block in bytes, and the physical (PADDR) and
virtual (VADDR) address of the block. The actual con-
tents of the memory block are written next. When all
blocks have been written, the end of the dump is in-
dicated by a memory block header containing only
zeroes.

All of the above are logged in a file named ‘ar-
gos.csi.RID’, whereRID is a random ID that will be
also used in advanced forensics discussed in the fol-
lowing section.

The data extracted fromArgosserve for more than
signature generation. By logging all potentially ‘in-
teresting’ data, thorough analysis of the attack is made
possible helping security experts understand new at-
tacks.

3.2.2 Advanced Forensics

An intrinsic characteristic ofArgosis that it is process
agnostic. This presents us with the problem of iden-
tifying the target of an attack. Discovering the vic-
tim process, provides valuable information that can
be used to locate vulnerable hosts, and assist in signa-



ture generation. To overcome this obstacle, we came
up with a novel idea that enables us to execute code
in the process’s address space, thus permitting us to
gather information about it.

Currently, most attacks hijack processes by inject-
ing assembly code (shellcode) and diverting control
flow to its beginning. Inspired by the above, we in-
ject our own shellcode into a process’s virtual address
space. After detecting an attack and logging state, we
place forensics shellcodedirectly into the process’s
virtual address space. The location where the code is
injected is crucial, and after various experiments we
chose the lasttext segment page at the beginning
of the address space. Placing the code in thetext
segment is important to guarantee that it will not be
overwritten by the process, since it is read-only. It
also increases the probability that we will not over-
write any critical process data. Having the shellcode
in place we then pointEIP to its beginning to com-
mence execution.

As an example, we implemented shellcode that ex-
tracts thePID of the victim process, and transmits it
over a TCP connection along with theRID generated
previously. The information is transmitted to a pro-
cess running at the guest, and the code then enters
a loop that forces it to sleep forever to ensure that
while it does not terminate, it remains dormant. At
the other end, an information gathering process at the
guest receives thePID and uses it to extract infor-
mation about the given process by the OS. Finally,
this information is transmitted to the host, where it is
stored.

The forensics process retrieves information about
the attacked process by runningnetstat, or if that
is not availableOpenPorts [17]. The above tools
offer both the name of the process, as well as all the
associated ports. Currently, forensics are available for
both Linux and win32 systems. In the future, we envi-
sion extracting the same or more information without
employing a 3rd process at the guest.

4 Evaluation

We evaluateArgosalong two dimensions: perfor-
mance and effectiveness. While performance is not
critical for a honeypot, it needs to be fast enough to
generate signatures in a timely fashion.

4.1 Performance

For realistic performance measurements we com-
pare the speed of code running onArgos with that
of code running without emulation. We do this for a
variety of realistic benchmarks, i.e., benchmarks that
are also used in real-life to compare PC performance.
Note that while this is an honest way of showing the
slowdown incurred byArgos, it is not necessarily the
most relevant measure. After all, we do not useArgos

as a desktop and in practice hardly care whether re-
sults appear much less quickly than they would with-
out emulation. The only moment when slowdown be-
comes an issue is when attackers decide to shun slow
hosts, because it might be a honeypot. To the best of
our knowledge such worms do not exist in practice.

Performance evaluation was carried out by com-
paring the observed slowdown at guests running on
top of various configurations ofArgos and unmod-
ified Qemu, with the original host. The host used
during these experiments was an AMD AthlonTM XP
2800 at 2 GHz with 512 KB of L2 cache, 1 GB of
RAM and 2 IDE UDMA-5 hard disks, running Gen-
too Linux with kernel 2.6.12.5. The guest OS ran
SlackWare Linux 10.1 with kernel 2.4.29, on top of
Qemu0.7.2 andArgos. To ameliorate the guest’s disk
I/O performance, we did not use a file as a hard disk
image, but instead dedicated one of the hard disks.

To quantify the observed slowdown we used
bunzip2 andapache. bunzip2 is a very CPU
intensive UNIX decompression utility. We used it
to decompress the Linux kernel v2.6.13 source code
(approx. 38 MB) and measured its execution time
using another UNIX utilitytime. Apache, on the
other hand, is a popular web server that we chose be-
cause it enables us to test the performance of a net-
work service. We measured its throughput in terms
of maximum processed requests per second using the
httperfHTTP performance tool.httperf is able
to generate high rates of single file requests to deter-
mine a web server’s maximum capacity.

In addition to the above, we used BYTE maga-
zine’s UNIX benchmark. This benchmark,nbench
for brevity, executes various CPU intensive tests to
produce three indexes. Each index corresponds to
the CPU’s integer, float and memory operations and
represents how it compares with an AMD K6TM at
233 MHz.

Figure 3 shows the results of the evaluation. We
tested the benchmark applications at the host, at
guests running over the originalQemu, and at differ-
ent configurations ofArgos: using a bytemap, and us-
ing a bytemap with code-injection detection enabled.
These are indicated in the figure as Vanilla QEMU,
Argos-B, and ARGOS-B-CI respectively. The y-axis
represents how many times slower a test was, com-
pared with the same test without emulation. The x-
axis shows the 2 applications tested along with the
3 indexes reported bynbench. Each colour in the
graph is a configuration tested, which from top to bot-
tom are: unmodifiedQemu, Argos using a bytemap
for memory tagging, and the same with code-injection
detection enabled.

Even in the fastest configuration,Argos is at least
16 times slower than the host. Most of the over-
head, however, is incurred byQemuitself. Argoswith
all the additional instrumentation is at most 2 times



 0

 5

 10

 15

 20

 25

 30

 35

 40

nbench
memory

nbench
float

nbench
integer

apachebunzip2

P
er

fo
rm

an
ce

 O
ve

rh
ea

d
Vanilla Qemu

Argos−B
Argos−B−CI

Figure 3: Performance Benchmarks

slower than vanillaQemu. In the case ofapache
and float operations specifically, there is only an 18%
overhead. This is explained by the lack of a real net-
work interface, and a hardware FPU in the emulator,
which incurs most of the overhead. In addition, we
emphasise that we have not used any of the optimi-
sation modules available forQemu. These modules
speed up the emulator to a performance of roughly
half that of the native system. While it is likely that
we will not quite achieve an equally large speed-up,
we are confident that much optimisation is possible.

Moreover, even though the performance penalty is
large, personal experience withArgos has shown us
that it is tolerable. Even when executing graphics-
intensive tasks, the machine offers decent usability
to human operators who use it as a desktop machine.
Moreover, we should bear in mind thatArgoswas not
designed as a desktop system, but as a platform for
hosting advertisedhoneypots. Performance is not our
main concern. Still, we have plans to introduce nov-
elties that will further improve performance in future
versions ofArgos.

4.2 Effectiveness

To determine how effectiveArgos is in capturing
attacks, we launched multiple exploits against both
Windows and Linux operating systems running on top
of it. For the Windows 2000 OS, we used the Metas-
ploit framework [18] which provides ready-to-use ex-
ploits, along with a convenient way to launch them.
We testedall exploits for which we were able to ob-
tain the software. In particular, all the attacks were
performed against vulnerabilities in software avail-
able with the professional version of the OS, with
the exception of the War-FTPD ftp server which is
third-party software. While we have also successfully
run other OSs onArgos(e.g., Windows XP), we have
only just started its evaluation. For the Linux OS, we
crafted two applications containing a stack and a heap
buffer overflow respectively and also usednbSMTP,

Vulnerability OS
Apache Chunked Encoding Overflow Windows
Microsoft IIS ISAPI .printer Extension
Host Header Overflow

Windows

Microsoft Windows WebDav ntdll.dll
Overflow

Windows

Microsoft FrontPage Server Extensions
Debug Overflow

Windows

Microsoft LSASS MS04-011 Overflow Windows
Microsoft Windows PnP Service Re-
mote Overflow

Windows

Microsoft ASN.1 Library Bitstring
Heap Overflow

Windows

Microsoft Windows Message Queueing
Remote Overflow

Windows

Microsoft Windows RPC DCOM Inter-
face Overflow

Windows

War-FTPD 1.65 USER Overflow Windows
nbSMTP v0.99 remote format string ex-
ploit

Linux

Custom Stack Overflow Linux
Custom Heap Corruption Overflow Linux

Table 1: Exploits Captured by Argos

an SMTP client that contains a remote format string
vulnerability that we attacked using a publicly avail-
able exploit.

A list of the tested exploits along with the un-
derlying OS is shown in table 1. For Windows, we
have only listed fairly well-known exploits. All ex-
ploits were successfully captured byArgos and the
attacked processes were consequently stopped to pre-
vent the exploit payloads from executing. In addition,
our forensics shellcode executed successfully, provid-
ing us with the process’s name and PID.

Finally, we should mention that during the perfor-
mance evaluation, as well as the preparation of at-
tacks,Argosdid not generate any false alarms about
an attack. A low number of false positives is crucial
for automated response systems. Even though the re-
sults do not undeniably prove thatArgos will never
generate false positives, considering the large number
of exploits tested, it may serve as an indication that
Argosis fairly reliable.

5 Conclusion

In this paper we have discussed an extreme in the
design space for automated intrusion detection and
response system: a software-only whole-system so-
lution based on anx86 emulator that uses dynamic
taint analysis to detect exploits and protects unmod-
ified operating systems, processes, etc. By choos-
ing a vantage point that incorporates attractive prop-
erties from both the hardware level (e.g., awareness of



physical addresses, memory mapping and DMA) and
also the higher-levels (virtual addresses, per-process
forensics), we believe our approach is able to meet the
demands of automated response systems better than
existing solutions.

The system exports the tainted memory blocks and
additional information as soon as an attack is de-
tected, at which point it injects forensics shellcode
into the code under attack to extract additional infor-
mation (e.g., executable name and process identifier).
Performance without employing any of the emula-
tor’s optimisation modules is significantly slower than
code running without the emulator. Even so, as our in-
tended application domain is (advertised) honeypots,
we believe the overhead is acceptable. More impor-
tantly, the system proved to be effective and was used
to capture and fingerprint a range of real exploits.

References

[1] Vern Paxson Stuart Staniford and Nicholas
Weaver. How to 0wn the internet in your spare
time. InProc. of the 11th USENIX Security Sym-
posium, 2002.

[2] Matthew M. Williamson. Throttling Viruses:
Restricting Propagation to Defeat Malicious
Mobile Code. InProc. of ACSAC Security Con-
ference, Las Vegas, Nevada, 2002.

[3] S. Singh, C. Estan, G. Varghese and S. Savage.
Automated worm fingerprinting. InIn Proc. of
the 6th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages
45–60, 2004.

[4] Kim Hyang-Ah and Brad Karp. Autograph: To-
ward automated, distributed worm signature de-
tection. InIn Proc. of the 13th USENIX Security
Symposium, 2004.

[5] D. Dagonand, X. Qin, G. Gu, W. Lee, J. Griz-
zard, J. Levine and Henry Owen. HoneyStat:
Local worm detection using honeypots. InIn
Proc. of the 7th International Symposium on Re-
cent Advances in Intrusion Detection (RAID),
2004.

[6] Christian Kreibich and Jon Crowcroft. Honey-
comb - creating intrusion detection signatures
using honeypots. In2nd Workshop on Hot Top-
ics in Networks (HotNets-II), 2003.

[7] Jedidiah R. Crandall and Frederic T. Chong. Mi-
nos: Control data attack prevention orthogonal
to memory model. InIn Proc. of the 37th annual
International Symposium on Microarchitecture,
pages 221–232, 2004.

[8] M. Costa, J. Crowcroft, M. Castro, A Rowstron,
L. Zhou, L. Zhang and P. Barham. Vigilante:
End-to-end containment of internet worms. In
In Proc. of the 20th ACM Symposium on Oper-
ating Systems Principles (SOSP), Brighton, UK,
October 2005.

[9] Dark Spyrit. Win32 buffer overows (location,
exploitation, and prevention). Phrack 55, 1999.

[10] Jedidiah R. Crandall, S. Felix Wu, and Fred-
eric T. Chong. Experiences using Minos
as a tool for capturing and analyzing novel
worms for unknown vulnerabilities. InIntru-
sion and Malware Detection and Vulnerability
Assessment: Second International Conference
(DIMVA05), Vienna, Austria, July 2005.

[11] Barnaby Jack. Remote windows kernel
exploitation - step into the ring 0. eEye
Digital Security Whitepaper, www.eeye.
com/∼data/publish/whitepapers/
research/OT20050205.FILE.pdf,
2005.

[12] James Newsome and Dawn Song. Dynamic
taint analysis for automatic detection, analysis,
and signature generation of exploits on com-
modity software. InProc. of the 12th Annual
Network and Distributed System Security Sym-
posium (NDSS), 2005.

[13] Fabrice Bellard. QEMU, a fast and portable dy-
namic translator. InIn Proc. of the USENIX An-
nual Technical Conference, pages 41–46, April
2005.

[14] Kevin Lawton et al. Bochs ia-32 emulator
project. http://bochs.sourceforge.
net.

[15] Basic Architecture, volume 1 ofIntel Architec-
ture Software Developer’s Manual. Intel Corpo-
ration, 1997.

[16] Instruction Reference, volume 2 ofIntel Archi-
tecture Software Developer’s Manual. Intel Cor-
poration, 1997.

[17] Diamondcs openports. http://www.
diamondcs.com.au/openports/.

[18] Metasploit project. http://www.
metasploit.com/.


