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Recap: Broadly Deployed Security
Mechanisms

NX-bit = Prevent arbitrary code execution
Stack canaries = Detect and prevent stack overflows

ASLR - Introduce uncertainty on the location of injected
shellcode and existing code in a running program



Attacker Response

NX-bit = Code-reuse (for example, ROP)

Stack canaries = Focus on and exploit heap overflows

ASLR = Find and exploit information leak bug to reveal
layout
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Heap to Stack

Attacker controls:

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

= the outcome of a call * or
jmp *

E.g., by overwriting a
function pointer in the
heap

= An areain the heap

ROP requires controlling
the data under RSP

?7?
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Stack (grows down)

Il

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

U

Heap

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)
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Enter Stack Pivoting

Make the stack pointer
point to user data

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

Stack (grows down)

Il

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

RSP

; U

Heap

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)
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Enter Stack Pivoting

Solution 1

Requirements:
= Aregister points to the controlled buffer on the heap
= An exchange gadget with esp and that register exists

How:
= Execute the gadget

xchg r**, rsp

ret
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Enter Stack Pivoting

Solution 2

Requirements:
= A gadget that adds/subs a large value from the stack pointer
= The result of the above points the SP to user controlled data

How:
= Execute the gadget

add Ox***, prsp sub Ox***, prsp

ret ret
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Enter Stack Pivoting

Solution 3

Requirements:

= You control RBP

= A leave gadget exists
How:

= Execute the gadget

mov 1l %ebp, %esp \

- el -leave

ret

.
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More Stack Pivoting

Combining multiple pivots is possible
= For example, executing a sub rsp, Ox**** gadget in a loop

Any instruction sequence that updates the RSP with user-
controlled data will do

Example:

push rax
pop rsp

ret
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Defenses

Check that RSP is pointing into the stack area
= Potentially expensive (how often should | check the RSP?)

= Can be potentially subverted (where are the stack
boundaries saved?)
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Actually Moving to the Stack

Find a gadget that copies your buffer into the stack
= For example, find a gadget that calls memcpy()
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Memcpy()

RDI RSI RDX
memcpy(dst, src, N)
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