Modern Exploitation
Addendum

CS-576 Systems Security

Instructor: Georgios Portokalidis
Fall 2018

Recap: Broadly Deployed Security
Mechanisms

NX-bit = Prevent arbitrary code execution
Stack canaries = Detect and prevent stack overflows

ASLR - Introduce uncertainty on the location of injected
shellcode and existing code in a running program

Attacker Response

NX-bit = Code-reuse (for example, ROP)

Stack canaries = Focus on and exploit heap overflows

ASLR = Find and exploit information leak bug to reveal
layout

Fall 2018 Stevens Institute of Technology

Heap to Stack

Attacker controls:

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

= the outcome of a call * or
jmp *

E.g., by overwriting a
function pointer in the
heap

= An areain the heap

ROP requires controlling
the data under RSP

?7?

Fall 2018

Stack (grows down)

Il

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

U

Heap

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

Stevens Institute of Technology

Enter Stack Pivoting

Make the stack pointer
point to user data

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

Stack (grows down)

Il

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

RSP

; U

Heap

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

Fall 2018 Stevens Institute of Technology

Enter Stack Pivoting

Solution 1

Requirements:
= Aregister points to the controlled buffer on the heap
= An exchange gadget with esp and that register exists

How:
= Execute the gadget

xchg r**, rsp

ret

Fall 2018 Stevens Institute of Technology

Enter Stack Pivoting

Solution 2

Requirements:
= A gadget that adds/subs a large value from the stack pointer
= The result of the above points the SP to user controlled data

How:
= Execute the gadget

add Ox***, prsp sub Ox***, prsp

ret ret

Fall 2018 Stevens Institute of Technology

Enter Stack Pivoting

Solution 3

Requirements:

= You control RBP

= A leave gadget exists
How:

= Execute the gadget

mov 1l %ebp, %esp \

- el -leave

ret

.

Fall 2018 Stevens Institute of Technology

More Stack Pivoting

Combining multiple pivots is possible
= For example, executing a sub rsp, Ox**** gadget in a loop

Any instruction sequence that updates the RSP with user-
controlled data will do

Example:

push rax
pop rsp

ret

Fall 2018 Stevens Institute of Technology

Defenses

Check that RSP is pointing into the stack area
= Potentially expensive (how often should | check the RSP?)

= Can be potentially subverted (where are the stack
boundaries saved?)

Fall 2018 Stevens Institute of Technology

10

Actually Moving to the Stack

Find a gadget that copies your buffer into the stack
= For example, find a gadget that calls memcpy()

Fall 2018 Stevens Institute of Technology

11

Memcpy()

RDI RSI RDX
memcpy(dst, src, N)

Fall 2018

Stevens Institute of Technology

12

dwedj Addowaw

