
(Early) Memory
Corruption Attacks

CS-576 Systems Security
Instructor: Georgios Portokalidis

Spring 2018

Spring 2018 Stevens Institute of Technology

Memory Corruption

“Memory corruption occurs in a computer program when
the contents of a memory location are unintentionally
modified due to programming errors; this is termed
violating memory safety.

When the corrupted memory contents are used later in that
program, it leads either to program crash or to strange and
bizarre program behavior. “

--wikipedia

Spring 2018 Stevens Institute of Technology

Common Vulnerabilities
Overflows: Writing beyond the end of a buffer

Underflows: Writing beyond the beginning of a buffer

Use-after-free: Using memory after it has been freed

Uninitialized memory: Using pointer before initialization

Null pointer dereferences: Using NULL pointers

Type confusion: Assume a variable/object has the wrong type

HW errors: Hammering memory to cause bit flips to non-owned
memory

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Buffer Overflows

Spring 2018 Stevens Institute of Technology

Buffer Overflows
Writing outside the boundaries of a buffer
Common programmer errors that lead to it …

§ Insufficient input checks/wrong assumptions about input
§ Unchecked buffer size
§ Integer overflows

Spring 2018 Stevens Institute of Technology

Stack Overflows

Spring 2018 Stevens Institute of Technology

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

Spring 2018 Stevens Institute of Technology

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top

RETADDR

buf
buf
buf
buf

Spring 2018 Stevens Institute of Technology

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top

RETADDR

buf
buf
buf
buf

./mytest AAAAA

Spring 2018 Stevens Institute of Technology

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top

RETADDR

????
????

A\0??
AAAA

./mytest AAAAA

Spring 2018 Stevens Institute of Technology

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

Low address/stack top

AAAA

AAAA
AAAA
AAAA
AAAA

./mytest AAAAAAAAAAAAAAAAAAA

\0???
High
address/stack
bottom

Spring 2018 Stevens Institute of Technology

Stack Overflow Example

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

Low address/stack top

AAAA

AAAA
AAAA
AAAA
AAAA

./mytest AAAAAAAAAAAAAAAAAAA

\0???
High
address/stack
bottom

Spring 2018 Stevens Institute of Technology

Control-Flow Hijacking
The saved return address is a code pointer stored in
memory

§ Controlling it grants control of a control-flow instruction
(e.g., ret)

Untrusted inputs that lead to corruption of a code pointer
lead to control-flow hijacking attacks

Spring 2018 Stevens Institute of Technology

Other Code Pointers
Return
address

return; ret

Function
address

typedef void (*cmpf_t)(int, int);
void compare(int array[], int len, int num, cmpf_t f)
{

int i;
for (i < 0; i < len; i++)

if (array[i] < num)
f(i, array[i]);

}
call *(rax)

Jump
table

switch (option) {
case 0:

Code …
case 1:

Code ...
...
}

jmp *(rax)

Spring 2018 Stevens Institute of Technology

Where to Point Execution

S T A C K0xdeadbeef

AAAA
AAAA
AAAA
AAAA

\0???

0xdeadbeef:

SHELLCODE
malicious machine code

Malicious injected code is also code
shellcode, because the first instances
where used to spawn a shell

Spring 2018 Stevens Institute of Technology

Injecting Shellcode

S T A C Kbuf + 0x14

AAAA
AAAA
AAAA
AAAA

\0???

SH
EL

LC
OD

E

Spring 2018 Stevens Institute of Technology

Code Injection
Code injection (CI) - Injecting machine code into a
vulnerable program’s memory

Code injections attacks inject code and use control-flow
hijacking to execute that code

Spring 2018 Stevens Institute of Technology

Shellcode Limitations

S T A
 C Kbuf + 0x14

AAAA

AAAA

AAAA

AAAA

\0???

SH
EL

LC
O

D
E

Injected shellcode cannot include a
null byte because of strcpy()

Shellcode needs to be carefully crafted to avoid
disallowed bytes

Other methods of copying data may not have the
same limitation: memcpy(), gets(), read(), fread(),
custom copy routines, etc.

Spring 2018 Stevens Institute of Technology

Stack Overflow Using read()

static void getURL(void)
{

char buf[64];

read(STDIN_FILENO, buf, 128);
get_webpage(buf);

}

Low address/stack top

High
address/stack
bottom

S T A C K

AAAA

AAAA
AAAA
AAAA
AAAA

????

…
…

AAAA

AAAA
No limitation on bytes read.

Spring 2018 Stevens Institute of Technology

Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top

RETADDR

oldEBP

buf

buf

buf
buf

Spring 2018 Stevens Institute of Technology

Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top

\0TADDR

AAAA

AAAA
AAAA
AAAA
AAAA./mytest AAAAAAAAAAAAAAAAAAA

Spring 2018 Stevens Institute of Technology

Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top

\0TADDR

AAAA

AAAA
AAAA
AAAA
AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAAAAAA

Spring 2018 Stevens Institute of Technology

Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High address/stack bottom

Low address/stack top

\0TADDR

AAAA

AAAA

AAAA

AAAA

AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAAAAAA

Function exit (LEAVE)

movl %ebp, %esp
pop %ebp

Spring 2018 Stevens Institute of Technology

Stack Overflow with FP

int mytest(char *str)
{

char buf[16];

strcpy(buf, str);

printf("%s\n", buf);

return strlen(buf);
}

S T A C K

High
address/stack
bottom

Low address/stack top

AAAA

ffffca3c

AAAA

AAAA

AAAA

AAAA

80484e1: c9 leave
80484e2: c3 ret

./mytest AAAAAAAAAAAAAAA\x3c\xca\xff\xffAAAA

Function exit (LEAVE)

movl %ebp, %esp
pop %ebp

\0???

Spring 2018 Stevens Institute of Technology

Data Attacks
static int mytest(char *str)
{

int authenticated = 0;
char buf[16];

read(STDIN_FILENO, buf, 32);
if (check_pass(buf))

authenticated = 1;

do_something(authenticated);
}

S T A C K

High address/stack bottom

Low address/stack top

RETADDR

oldEBP
authenticated

buf

buf
buf

buf

Spring 2018 Stevens Institute of Technology

Data Attacks
static int mytest(char *str)
{

int authenticated = 0;
char buf[16];

read(STDIN_FILENO, buf, 32);
if (check_pass(buf))

authenticated = 1;

do_something(authenticated);
}

S T A C K

High address/stack bottom

Low address/stack top

RETADDR

oldEBP
0001

AAAA
AAAA
AAAA

AAAA./mytest AAAAAAAAAAAAAAA\x01\x00\x00\x00

Spring 2018 Stevens Institute of Technology

Non-Control Data Attacks
Attacks overwriting data not directly used in control flow

Essentially corrupting program state that affects its
security

§ For example: Disabling/Bypassing a security mechanism

Spring 2018 Stevens Institute of Technology

Writing Shellcode

Spring 2018 Stevens Institute of Technology

How to Write Shellcode
Code in assembly à compile with GCC à Binary code
Compile assembly program to object file
gcc -c shellcode.S

View generated code
objdump –d shellcode.o

Copy text segment to separate file
objcopy -O binary --only-section=.text shellcode.o shellcode.sc

Usually encode binary code as text in C, perl, python, etc.
hexdump -v -e '"\\""x" 1/1 "%02x" ""' shellcode.sc

Spring 2018 Stevens Institute of Technology

Example Shellcode

write(1, message, 13)
mov $1, %rax # system call 1 is write
mov $1, %rdi # file handle 1 is stdout
mov $message, %rsi
mov $13, %rdx # number of bytes
syscall # invoke operating system to do the write

exit(0)
mov $60, %rax
xor %rdi, %rdi # we want return code 0
syscall # invoke operating system to exit

message:
.ascii "Hello, world\n"

Spring 2018 Stevens Institute of Technology

Linux System Call Conventions
The kernel interface uses %rdi, %rsi, %rdx, %r10, %r8 and %r9 for
passing arguments

A system-call is done via the syscall instruction. The kernel destroys
registers %rcx and %r11

The number of the syscall has to be passed in register %rax

System-calls are limited to six arguments, no argument is passed
directly on the stack

Returning from the syscall, register %rax contains the result of the
system-call. A value in the range between -4095 and -1 indicates an
error, it is -errno

Spring 2018 Stevens Institute of Technology

Example Shellcode

write(1, message, 13)
mov $1, %rax # system call 1 is write
mov $1, %rdi # file handle 1 is stdout
mov $message, %rsi
mov $13, %rdx # number of bytes
syscall # invoke operating system to do the write

exit(0)
mov $60, %rax
xor %rdi, %rdi # we want return code 0
syscall # invoke operating system to exit

message:
.ascii "Hello, world\n"

Spring 2018 Stevens Institute of Technology

Patch Address of Message

0:48 c7 c0 01 00 00 00 mov $0x1,%rax
7:48 c7 c7 01 00 00 00 mov $0x1,%rdi
e:48 c7 c6 00 00 00 00 mov $0x0,%rsi
15:48 c7 c2 0d 00 00 00 mov $0xd,%rdx
1c:0f 05 syscall
1e:48 c7 c0 3c 00 00 00 mov $0x3c,%rax
25:48 31 ff xor %rdi,%rdi
28:0f 05 syscall

Patch the address of message within
the vulnerable application for

shellcode to run correctly

Spring 2018 Stevens Institute of Technology

Testing Shellcode From C

The shellcode can be called
§ (*(void(*)()) shellcode)();

Or written to stdout
§ write(1, shellcode, sizeof(shellcode));

char shellcode[] =
"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"
"\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff"
"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

Spring 2018 Stevens Institute of Technology

“Special” Bytes Limitations

Certain characters may not be allowed
§ strcpy() stops copying at null byte
§ gets() reads one line at a time
§ Input may need to be alphanumeric

Bypasses:
§ Rewrite shellcode to avoid characters
§ Encode shellcode

char shellcode[] =
"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"
"\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff"
"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

Spring 2018 Stevens Institute of Technology

Eliminating 0 Bytes
Zero in opcodes

§ Alternate instructions can achieve a similar result

Zero in constants
§ Use multiple instructions to construct constants

Spring 2018 Stevens Institute of Technology

Eliminating 0 Bytes
Zero in opcodes

§ Alternate instructions can achieve a similar result

Zero in constants
§ Use multiple instructions to construct constants

0:48 31 c0 xor %rax,%rax

3:48 ff c0 inc %rax

Spring 2018 Stevens Institute of Technology

Eliminating 0 Bytes
write(1, message, 13)
xor %rax, %rax
inc %rax
#mov $1, %rax # system call 1 is write
xor %rdi, %rdi
inc %rdi
#mov $1, %rdi # file handle 1 is stdout
mov $message, %rsi
xor %rdx, %rdx
addb $13, %dl
#mov $13, %rdx # number of bytes
syscall # invoke operating system to do the write

exit(0)
xor %rax, %rax
addb $60, %al
#xor $60, %rax # system call 60 is exit
xor %rdi, %rdi # we want return code 0
syscall # invoke operating system to exit

message:
.ascii "Hello,world\n"

Spring 2018 Stevens Institute of Technology

Eliminating Patching
write(1, message, 13)
xor %rax, %rax
inc %rax
#mov $1, %rax # system call 1 is write
xor %rdi, %rdi
inc %rdi
#mov $1, %rdi # file handle 1 is stdout
lea message(%rip), %rsi # rip relative load of message address
xor %rdx, %rdx
addb $13, %dl
#mov $13, %rdx # number of bytes
syscall # invoke operating system to do the write

exit(0)
xor %rax, %rax
addb $60, %al
#xor $60, %rax # system call 60 is exit
xor %rdi, %rdi # we want return code 0
syscall # invoke operating system to exit

message:
.ascii "Hello,world\n"

Spring 2018 Stevens Institute of Technology

Making Exploits More Generic

Locals

Possible
alignment

bytes

Possible
save FP

Saved
return

address

Stack

RETADDR

RETADDR

NOP sled

Shellcode

Multiple copies of
the return address

Point in the NOP sled

Execution will slide
into shellcode

Spring 2018 Stevens Institute of Technology

Heap Overflows

Spring 2018 Stevens Institute of Technology

Heap Overflows

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
FILE = *filed;
char *userinput = malloc(20);
char *outputfile = malloc(20);

strcpy(outputfile, "/tmp/foobar");
strcpy(userinput, argv[1]);

filed = fopen(outputfile, "a");
if(filed == NULL){

fprintf(stderr, "error opening file %s\n", outputfile);
exit(1); }

fprintf(filed, "%s\n", userinput);
fclose(filed);
return 0;

}

Spring 2018 Stevens Institute of Technology

Heap Structure

HEAP
HEAP userinput outputfile

char *userinput = malloc(20);
char *outputfile = malloc(20);

Spring 2018 Stevens Institute of Technology

Overwriting Program Data

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
FILE = *filed;
char *userinput = malloc(20);
char *outputfile = malloc(20);

strcpy(outputfile, "/tmp/foobar");
strcpy(userinput, argv[1]);

filed = fopen(outputfile, "a");
if(filed == NULL){

fprintf(stderr, "error opening file %s\n", outputfile);
exit(1); }

fprintf(filed, "%s\n", userinput);
fclose(filed);
return 0;

}

Overwrite
outputfile

Spring 2018 Stevens Institute of Technology

Overwriting Program Data

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
FILE = *filed;
char *userinput = malloc(20);
char *outputfile = malloc(20);

strcpy(outputfile, "/tmp/foobar");
strcpy(userinput, argv[1]);

filed = fopen(outputfile, "a");
if(filed == NULL){

fprintf(stderr, "error opening file %s\n", outputfile);
exit(1); }

fprintf(filed, "%s\n", userinput);
fclose(filed);
return 0;

}

Control what file is
written to

Spring 2018 Stevens Institute of Technology

Overwriting Program Data

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
FILE = *filed;
char *userinput = malloc(20);
char *outputfile = malloc(20);

strcpy(outputfile, "/tmp/foobar");
strcpy(userinput, argv[1]);

filed = fopen(outputfile, "a");
if(filed == NULL){

fprintf(stderr, "error opening file %s\n", outputfile);
exit(1); }

fprintf(filed, "%s\n", userinput);
fclose(filed);
return 0;

}

Append to
that file

What are good
targets?

Whether you can directly
control a code pointer depends

on the program

Spring 2018 Stevens Institute of Technology

Heap Metadata

HEAP
HEAP userinput outputfile

Memory management metadata

Spring 2018 Stevens Institute of Technology

Heap Overflows As Arbitrary
Writes
Use of the corrupted meta data and may lead to an
arbitrary write, corrupting a code pointer or security
critical data

HEAP
HEAP userinput outputfile

Corrupted meta data

Spring 2018 Stevens Institute of Technology

How Memory Allocators Work
We will focus on glibc’s one
https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-
malloc/

Heap memory is obtained from the kernel using the brk() or
mmap() system calls

§ Provides plenty of “raw” space

The allocator splits memory into arenas
§ Each thread gets its own arena
§ Each arena has its own metadata

Memory within the arena is split into chunks and given to program
through various allocation functions (e.g., malloc())

§ Chunks are organized in bins, usually through double linked-lists

Spring 2018 Stevens Institute of Technology

Heap Arena Structure
Arena

Free chunksAllocated chunksmalloc chunks
(headers)

No two free chunks can be adjacent.

Adjacent free chunks are merged together

Spring 2018 Stevens Institute of Technology

Bitmap

• P - This bit is set when
previous chunk is
allocated

• M - This bit is set when
chunk is mmap’d

• N - This bit is set when
this chunk belongs to a
thread arena.

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Corrupted metadata

Spring 2018 Stevens Institute of Technology

Corrupted metadata

Spring 2018 Stevens Institute of Technology

Linked-list Manipulation to
Arbitrary Write

Remove n

n->next->prev = n->prev;

n->prev->next = n->next;

Corrupted pointers attacker controlled next
and prev pointers due to the overwritten n

Spring 2018 Stevens Institute of Technology

Linked-list Manipulation to
Arbitrary Write

Remove n

n->next->prev = n->prev;

n->prev->next = n->next;

*(n->next + prev_offset) = n->next

*(n->prev + next_offset) = n->next

Spring 2018 Stevens Institute of Technology

Examples 1

int main(int argc, char **argv)
{

int i;
char *buf1;

buf1 = malloc(64);
for (i = 0; i < 200; i++)

buf1[i] = 'A';
return 0;

}

int main(int argc, char **argv)
{

int i;
char *buf1;

buf1 = malloc(64);
for (i = 0; i < 200; i++)

buf1[i] = 'A';
free(buf1);
return 0;

}

Spring 2018 Stevens Institute of Technology

Examples 2

int main(int argc, char **argv)
{

int i;
char *buf1, *buf2;

buf1 = malloc(64);
buf2 = malloc(64);
for (i = 0; i < 200; i++)

buf2[i] = buf1[i] = 'A';
free(buf2);
free(buf1);
return 0;

}

Program received signal SIGSEGV,
Segmentation fault.
_int_free (av=0x7ffff7dd6620 <main_arena>,
p=0x601050, have_lock=0)

at malloc.c:3966

0x00007ffff7aaa155 <+293>: pop %r13
0x00007ffff7aaa157 <+295>: pop %r14
0x00007ffff7aaa159 <+297>: pop %r15
…
0x00007ffff7aaa185 <+341>: cmp %rax,%rbx
0x00007ffff7aaa188 <+344>: je 0x7ffff7aaa9bf <_int_free+2447>
0x00007ffff7aaa18e <+350>: testb $0x2,0x4(%r12)
0x00007ffff7aaa194 <+356>: je 0x7ffff7aaaa4e <_int_free+2590>

=> 0x00007ffff7aaa19a <+362>: mov 0x8(%r13),%rax

(gdb) x $r13
0x4141414141a15190

Spring 2018 Stevens Institute of Technology

Freeing the same buffer
twice can also lead to
metadata corruption

§ May be harder to
exploit

Double-Free Bugs
int main(int argc, char **argv)
{

int i;
char *buf1, *buf2;

buf1 = malloc(200);
buf2 = malloc(200);
for (i = 0; i < 200; i++)

buf2[i] = buf1[i] = 'A';
free(buf2);
free(buf2);
return 0;

}

Spring 2018 Stevens Institute of Technology

Heap Overflows In Practice
Exploiting the allocator depends on

§ The allocator’s implementation
§ The sequence of allocator calls in the program

The attacker may need to “guide” the program to perform
a long sequence of allocations and deallocations to align
the objects in the heap

Spring 2018 Stevens Institute of Technology

A buffer, object, etc. is used
after being freed
Scenario:

1. Program allocates and then
later frees block A

2. Attacker allocates block B,
reusing the memory
previously allocated to
block A

3. Attacker writes data into
block B

4. Program uses freed block
A, accessing the data the
attacker left there

Use-After-Free Vulnerabilities
int main(int argc, char **argv)

{

struct objectA *objA;

struct objectB *objB;

objA = malloc(sizeof(struct object A));

funcA(objA); /* frees objA */
objB = malloc(sizeof(struct object B));

funcB(objhB) /* writes on objB */

…

funcAA(objA); /*accesses freed objA */

Spring 2018 Stevens Institute of Technology

A buffer, object, etc. is used
after being freed
Scenario:

1. Program allocates and then
later frees block A

2. Attacker allocates block B,
reusing the memory
previously allocated to
block A

3. Attacker writes data into
block B

4. Program uses freed block
A, accessing the data the
attacker left there

Use-After-Free Vulnerabilities
int main(int argc, char **argv)

{

struct objectA *objA;

struct objectB *objB;

objA = malloc(sizeof(struct object A));

funcA(objA); /* frees objA */
objB = malloc(sizeof(struct object B));

funcB(objhB) /* writes on objB */

…

funcAA(objA); /*accesses freed objA */

struct objectA {
… …
void (*fprt)();
char *string;
…

}

struct objectB {
… …
int a;
long b;
…

}

Spring 2018 Stevens Institute of Technology

C++ Vulnerabilities
int main(int argc, char **argv)

{

ClassA *a;

ClassB *b;

b = new ClassB();

….

a = b;

a->vfunc1();

b->vfunc1();

class ClassA {

…

virtual void vfunc1() { /* code Avf1 */

void func1() { /* code Af1 */

};

class ClassB : ClassA {

…

virtual void vfunc1() { /* code Bvf1 */

virtual void vfunc2() { /* code Bvf2 */

void func2() { /* code Bf2 */ }

};

Which functions
are called?

Spring 2018 Stevens Institute of Technology

The actual virtual function
that will be called depends
on the object type NOT on
the class type of the
variable used in the
invocation
VTables are used to enable
late binding

Late Binding and VTables

*vptrb

*vfunc1 *vfunc1

VTable
ClassA

VTable
ClassB

class variables

Avf1 Bvf1

*vfunc2

Bvf2

Static (generated at compile time)

Dynamic (new)

a

Spring 2018 Stevens Institute of Technology

The actual virtual function
that will be called depends
on the object type NOT on
the class type of the
variable used in the
invocation
VTables are used to enable
late binding

Heap overflows can be
used to corrupt the vptr

Late Binding and VTables

*vptrb
class variables

Dynamic (new)

Attacker
controlled
buffer

Spring 2018 Stevens Institute of Technology

Global Data Overflows

Spring 2018 Stevens Institute of Technology

Global Data Overflow
Arrays in .bss and .data segments

.data
.data global_path scratch_buffer

static char global_path[256];

static char scratch_buffer[1024];

int main(int argc, char **argv)

{

Order needs to be explored
by the attacker

Spring 2018 Stevens Institute of Technology

Integer Overflows

Spring 2018 Stevens Institute of Technology

Integer Overflows
Integers wrap around!
Can be used to bypass if statements

Spring 2018 Stevens Institute of Technology

Example: Only 5 Clients Can
Connect

unsigned int connections = 0;
...
/* new connection attempt */
...
if(connections<5) {

connections++;
}

if(connections<5) {
grant_access();

}else{
deny_access();

}

Spring 2018 Stevens Institute of Technology

Integer Overflows
Integers wrap around!
Can be used to bypass if statements
Can do arbitrary writes by referencing negative offsets in
arrays
buf[-1000] = input

Spring 2018 Stevens Institute of Technology

Type Confusion

Spring 2018 Stevens Institute of Technology

Type Confusion
int main(int argc, char **argv)

{

ClassA *a;

ClassB *b;

a= new ClassA();

….

b = (Class B)objA;

b->foobar();

class ClassA {

…

virtual void vfunc1() { /* code Avf1 */

void func1() { /* code Af1 */

};

class ClassB {

…

virtual void foobar(int foo, int bar);

}

C/C++ is weakly
typed

Spring 2018 Stevens Institute of Technology

Type Confusion is “In”
One Perfect Bug: Exploiting Type Confusion in Flash

§ https://googleprojectzero.blogspot.com/2015/07/one-
perfect-bug-exploiting-type_20.html

CVE-2016-3185 php: Type confusion vulnerability in
make_http_soap_request()

§ https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2016-
3185

Python xmlparse_setattro() Type Confusion
§ http://bugs.python.org/issue25019

Exploiting Type Confusion Vulnerabilities in Oracle JRE
(CVE-2011-3521/CVE-2012-0507)

§ http://schierlm.users.sourceforge.net/TypeConfusion.html

Spring 2018 Stevens Institute of Technology

Format String Exploits

Spring 2018 Stevens Institute of Technology

Format String Bugs
Occurs when untrusted input is used as format string

Exploits how variadic functions and the printf-family of
functions specifically work

int printf(const char * restrict format, ...);

Spring 2018 Stevens Institute of Technology

Argument Types and Number
Based on Format String
printf(“%ld %h %c %g %s”, long_integer, short, character,
double, string);

Arguments are pushed to the stack!

printf reads stack arguments based on the format string

Stack char * double char short long int

Spring 2018 Stevens Institute of Technology

High addresses

RSP

Not Enough Arguments
printf(“%ld %h %c %g %s”);
What happens when there is a mismatch between format
string and actual arguments?

Stack

Spring 2018 Stevens Institute of Technology

High addresses

RSP

Not Enough Arguments
printf(“%ld %h %c %g %s”);
What happens when there is a mismatch between format
string and actual arguments?
Memory (stack) data are leaked

Stack long int

Spring 2018 Stevens Institute of Technology

High addresses

RSP

Not Enough Arguments
printf(“%ld %h %c %g %s”);
What happens when there is a mismatch between format
string and actual arguments?
Memory (stack) data are leaked

Stackshort long int

Spring 2018 Stevens Institute of Technology

High addresses

RSP

Not Enough Arguments
printf(“%ld %h %c %g %s”);
What happens when there is a mismatch between format
string and actual arguments?
Memory (stack) data are leaked

Stackchar short long int

Spring 2018 Stevens Institute of Technology

High addresses

RSP

Direct Parameter Access
“%3$x” à Access the 3rd argument

Spring 2018 Stevens Institute of Technology

Stack

High addresses

RSP

Corrupting Memory Using printf
%n can be used to store the number of written characters
into an integer pointer

int n;
long li = 100;
printf(“%ld\n%n”, li, &n);

Spring 2018 Stevens Institute of Technology

Corrupting Memory Using printf
%n can be used to store the number of written characters
into an integer pointer

int n;
long li = 100;
printf(“%ld\n%n”, li, &n);

n = 4

Spring 2018 Stevens Institute of Technology

Corrupting Memory Using printf
printf(“%ld%$3n”, li);

Spring 2018 Stevens Institute of Technology

Stack

High addresses

RSP

len(li) li

Corrupting Memory Using printf
printf(“%ld%$3n”, li);

Spring 2018 Stevens Institute of Technology

Stack

High addresses

RSP

len(li) li

More printf()
Length modifier (+ zero padding)

long li = 23;

printf(“%0128ld\n”, li);

It is easy to write a large number of characters!

000
000
00000000000023

Spring 2018 Stevens Institute of Technology

printf As An Arbitrary Write
printf(“%0128ld%$3n”, li);

Spring 2018 Stevens Institute of Technology

Stack

High addresses

RSP

128 li

Levels of Compromise

Spring 2018 Stevens Institute of Technology

Remote VS local
Local overflow

§ If the user input that can lead to the overflow can be only
provided by a local user

Remote overflow
§ If the user input that can lead to the overflow can be only

provided over the network

Spring 2018 Stevens Institute of Technology

Executing programs

User

Administrator

Program

Program

Program

Program

Program

All programs run
with the privileges
of the running user

(Effective UID)

Spring 2018 Stevens Institute of Technology

Accessing resources

User

Administrator

KERNEL

User
accessible
resources

Privileged
resources

Program

Program

Spring 2018 Stevens Institute of Technology

SETUID Programs
Programs that run with the privileges of their owner, not
the executing user

User

KERNEL

User
accessible
resources

Privileged
resources

SETUID
Program

Spring 2018 Stevens Institute of Technology

Local Overflow Attacks

User
Privileged
Program

Privileged
resources

Other
privileged
resources

Other
privileged
resources

Program controls
which resources are
made accessible

Program can access
these, but it’s not

part of its
functionality

Spring 2018 Stevens Institute of Technology

Local Overflow Attacks

User
Privileged
Program

Privileged
resources

Other
privileged
resources

Other
privileged
resources

Spring 2018 Stevens Institute of Technology

Local Overflow Attacks

User
Privileged
Program

Privileged
resources

Other
privileged
resources

Other
privileged
resources

Bad Input

Such attacks are also referred to as privilege
escalation attacks

Spring 2018 Stevens Institute of Technology

Attacks Against the Kernel
The kernel can also suffer similar attacks

User

KERNEL

Vulnerable
system call

Privileged
resources

User
Program

Spring 2018 Stevens Institute of Technology

Remote Overflow Attacks

User

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginx

Spring 2018 Stevens Institute of Technology

Remote Overflow Attacks

User

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginx

Spring 2018 Stevens Institute of Technology

Remote Overflow Attacks

User

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginxBad Input

Listen for
connection

Spring 2018 Stevens Institute of Technology

Remote Overflow Attacks

User

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginxBad Input

Shell
Listen for
connection

Spring 2018 Stevens Institute of Technology

Remote Overflow Attacks

User

www.stevens.edu

Host: www
OS: Debian
HTTP Server: nginxBad Input

Shell
Listen for
connection

resources

resources

resources

Such attacks are also referred to as
remote code execution attacks

Spring 2018 Stevens Institute of Technology

Finding Exploitable Bugs Ain’t
Easy

Spring 2018 Stevens Institute of Technology

Reading
Low-level Software Security: Attacks and Defenses:
https://trailofbits.github.io/ctf/exploits/references/tr-2007-153.pdf

Smashing the stack for fun and profit: http://phrack.org/issues/49/14.html

System call conventions: http://man7.org/linux/man-pages/man2/syscall.2.html

Basic integer overflows: http://phrack.org/issues/60/10.html

Once upon a free: http://phrack.org/issues/57/9.html

Format string attacks: https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

Using GDB to exploit: https://www.exploit-db.com/papers/13205/

http://10kstudents.eu/material/

Spring 2018 Stevens Institute of Technology

