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Why?
Software has bugs
Defenses slip
Untrusted code

Compartmentalization 
limits interference and 
damage!
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Sandboxing Means Isolation

“a sandbox is a security mechanism for separating running programs” 
-- wikipedia



Opportunities for Sandboxing: 
Browsers
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Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code 

generation, or through emulation
§ Security checks injected to enforce policy
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Lets Refresh What We Know 
About OSes
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User space has 
restricted access to 
CPU and memory

User space cannot 
access HW devices
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Example of OS-Level Access 
Control to HW



Process-level Isolation
Processes cannot directly access each other’s state
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Process-level Isolation
The kernel can setup inter-process communication
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Process-level Isolation
Same for processes owned by different users
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The memory-management 
unit (MMU) provides virtual 
memory

Execution rings separate 
user and kernel space

§ Indicated by bits in CPU 
status register

Processes are isolated into 
different virtual memory 
address spaces
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Back to Sandboxing
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Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code 

generation, or through emulation
§ Security checks injected to enforce policy
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Building on Process Isolation
Run code in its own process space to isolate it from 
browser process
Congratulations you have just executed untrusted code 
from the Internet!
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Container must have limited privileges
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Chromium Sandboxing in 
Linux
Chromium runs plugins and the rendering engine for each 
tab in a separate process
Rendering processes are sandboxed
Sandboxed processes are managed by a broker process 
over IPC
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https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md

https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md


Spring 2018 Stevens Institute of Technology



Process Sandbox: SUID
A helper binary with the setuid bit set is used 

The SUID bit causes the execution of the process as root
§ Enables access to privileged kernel APIs

chroot() is used to change the process’ root directory
§ Take away file system access from the process

Process is placed in new PID namespace
§ Process cannot terminate or signal processes outside the namespace

Process is placed in new network namespace
§ Restrict network access of process

Finally drop super-user privileges
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Process Sandbox: User 
Namespaces
User namespaces are an unprivileged API

Used as an alternative to SUID sandbox

A process is placed a new namespace

Isolates:
§ Filesystem
§ Network
§ PID
§ IPC
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User Namespaces
A newly launched process can be put in a new namespace

§ Through the clone() system call
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Reading material: https://lwn.net/Articles/531114/

Namespace   Constant                         Isolates
Cgroup CLONE_NEWCGROUP   Cgroup root directory
IPC             CLONE_NEWIPC             System V IPC, POSIX message queues
Network   CLONE_NEWNET            Network devices, stacks, ports, etc.
Mount       CLONE_NEWNS             Mount points
PID             CLONE_NEWPID            Process IDs
User          CLONE_NEWUSER         User and group IDs
UTS            CLONE_NEWUTS           Hostname and NIS domain name

Available namespaces

https://lwn.net/Articles/531114/


Process Sandbox: SECCOMP BPF
Filters the kernel APIs available to a process

Used together with previous sandboxes

Aims to protect the kernel from a malicious process

Available system calls are defined using Berkeley packet 
filters

§ Filters are compiled to a program that enforces policy
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static int install_syscall_filter(void)

{

struct sock_filter filter[] = {

/* Validate architecture. */

VALIDATE_ARCHITECTURE,

/* Grab the system call number. */

EXAMINE_SYSCALL,

/* List allowed syscalls. */

ALLOW_SYSCALL(rt_sigreturn),

#ifdef __NR_sigreturn

ALLOW_SYSCALL(sigreturn),

#endif

ALLOW_SYSCALL(exit_group),

ALLOW_SYSCALL(exit),

ALLOW_SYSCALL(read),

ALLOW_SYSCALL(write),

KILL_PROCESS,

};

struct sock_fprog prog = {

.len = (unsigned short)(sizeof(filter)/sizeof(filter[0])),

.filter = filter,

};
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if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
perror("prctl(NO_NEW_PRIVS)");
goto failed;

}
if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)) {

perror("prctl(SECCOMP)");
goto failed;

}
return 0;

failed:
if (errno == EINVAL)

fprintf(stderr, "SECCOMP_FILTER is not available. :(\n");
return 1;

}



Limitations of OS and VM-based 
Sandboxing
Context switches between broker and sandboxed 
processes can be expensive
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Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code 

generation, or through emulation
§ Security checks injected to enforce policy
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Example: JS/Java
The language and the runtime environment/VM is 
enforcing security

§ Memory safe languages
§ Memory corruption or leakage is not possible (at least in 

theory)

Access control done at the API level, for example:
§ Which files can be loaded
§ Which frames are accessible through the DOM
§ Where can code be loaded from 
§ The VM acts as a reference monitor
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Sandboxing Unsafe Languages
Pointers can be used to potential read/write arbitrary 
memory

Memory accesses need to be isolated first
§ Can rarely rely on HW to contain memory operations
§ Software checks are introduced in application code  
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Software-fault Isolation
Run multiple programs in the same address space that 
run in isolation

Each program runs in a different logical fault domain

Programs can access memory within their domain
§ Ensures memory secrecy and integrity

Code within a domain cannot call/jump to code in other 
domains

§ Unless through secure interfaces
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Software-fault Isolation
Programs can only access memory within their domain

§ Ensures memory secrecy and integrity
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Software-fault Isolation
Programs can only access memory within their domain

§ Ensures memory secrecy and integrity

Code within a domain cannot call/jump to code in other 
domains

§ Unless through secure interfaces

Modify programs during compilation or by rewriting to 
enforce these properties

Spring 2018 Stevens Institute of Technology



Constraining Memory 
Accesses
Through boundary checking
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cmp 0x0300
if less Error
cmp 0x04AA
if greater Error
write x

0x0300

0x04AA



Constraining Memory 
Accesses
We can improve the boundary checks

§ By allocating domains in aligned memory ranges
§ Using bit masking to help with checking
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tmp := x & FF00
cmp tmp 0300
if not equal Error
write x

0x0300

0x03FF



Constraining Memory 
Accesses
Further improvements

§ Do not detect error
§ Constrain memory access to domain
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tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF



Constraining Memory 
Accesses
Eliminating temporary registers is not always a good idea
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0x0300

0x03FF

…
x : = x & 00FF
x : = x | 0300
write x

Malicious code could 
bypass masking 

operations

Time Of Check
Time Of Use

(TOCTOU)



Constraining Memory 
Accesses
Can malicious code bypass checks with temporary 
registers?
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Constraining Memory 
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tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF

?
• tmp has not been initialized 

and will probably cause the 
program to crash.

• Can be forced to crash by 
setting tmp to bad address 
(e.g., 0xffffffff) after write



Constraining Memory 
Accesses
Can malicious code bypass checks with temporary 
registers?

Spring 2018 Stevens Institute of Technology

tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF

?
This will also not work



Constraining Control Flow
Sandboxes are mainly to used to constrain untrusted code 
so obviously this is a general problem
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…
jmp ptr

?



Constraining Control Flow
Similar tricks can be applied
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…
jmp ptr

…
tptr : = ptr & 00FF
tptr : = tptr | 0300
jmp tptr

…
call ptr

…
tptr : = ptr & 00FF
tptr : = tptr | 0300
call tptr

…
ret ?



Constraining Control Flow
Naive approach
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ret

pop tptr
tptr : = tptr & 00FF
tptr : = tptr | 0300
jmp ptr



CISC Trouble
Constraining within the domain is not enough

§ Instructions may be hidden within instructions in CISC 
programs
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Pseudo Fixed-size Instructions
Align every “pseudo” instruction on a 32-byte boundary

§ 0x1F bits are always zero
Force pointer so it can only point to a pseudo instruction
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pop tptr
tptr : = tptr & 00E0
tptr : = tptr | 0300
jmp ptr



Benefits of SFI
No context switches

Faster if run-time checks are faster than context switching
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Google Native Client (NaCL)
A sandboxing technology for running a subset of Intel 
x86, ARM, or MIPS native code in a sandbox

https://developer.chrome.com/native-client

NaCL programs are compiled with modified compiler

Supports subset of language

Produces sandboxed programs
Spring 2018 Stevens Institute of Technology

https://developer.chrome.com/native-client


Escaping Sandboxes
Exploitation of a sandboxed component grants limited 
control

But sandboxes may have bugs

Multiple exploits in different components are usually 
required

In 2012’s pwnium competition 14 bugs where needed to 
take down chrome

§ http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-
1.html

Spring 2018 Stevens Institute of Technology

http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html
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Multiple Layers of Sandboxes

Sandboxed process

Sandboxed
component

Original process



Other Use Cases for Isolation
Process-level Isolation from the OS is frequently used to 
realize the principle of least privilege in servers

Examples: SSH, Web servers
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SSH

SSH 
listening 
process

SSH request 
serving 
process

Connections

Authenticate
SSH request 

serving 
process

SSH request 
serving 
process

fork()
Runs as root

How is access control done here?
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