
Sandboxing
CS-576 Systems Security

Instructor: Georgios Portokalidis
Spring 2018

Why?
Software has bugs
Defenses slip
Untrusted code

Compartmentalization
limits interference and
damage!

Spring 2018 Stevens Institute of Technology

Sandboxing Means Isolation

“a sandbox is a security mechanism for separating running programs”
-- wikipedia

Opportunities for Sandboxing:
Browsers

Spring 2018 Stevens Institute of Technology

Flash
plugin

Browser

JS
engine

Internet

.swf

.js

Untrusted
inputs

Spring 2018 Stevens Institute of Technology

Opportunities for Sandboxing:
Browsers

Flash
plugin

Browser

JS
engine

Internet

.swf

.js

Sandboxes

Spring 2018 Stevens Institute of Technology

Untrusted Code in Browsers

Flash
plugin

Browser

JS
engine

Internet

.html

.css
Rendering

engine

Untrusted
inputs

Spring 2018 Stevens Institute of Technology

Untrusted Code in Browsers

Flash
plugin

Browser

JS
engine

Internet

.html

.css
Rendering

engine

Untrusted
inputs

Sandbox?

Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code

generation, or through emulation
§ Security checks injected to enforce policy

Spring 2018 Stevens Institute of Technology

Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code

generation, or through emulation
§ Security checks injected to enforce policy

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

Lets Refresh What We Know
About OSes

Spring 2018

OS Access Control of HW

User land

Kernel

Application Application Application

Trusted Kernel

CPU MEMORY HW DEVICES
Hardware

Stevens Institute of Technology

Spring 2018

OS Access Control of HW

User land

Kernel

Application Application Application

Trusted Kernel

CPU MEMORY HW DEVICES
Hardware

Stevens Institute of Technology

Spring 2018

OS Access Control of HW

User land

Kernel

Application Application Application

Trusted Kernel

CPU MEMORY HW DEVICES
Hardware

Stevens Institute of Technology

User space has
restricted access to
CPU and memory

User space cannot
access HW devices

Spring 2018

OS Access Control of HW

User land

Kernel

Application Application Application

Trusted Kernel

CPU MEMORY HW DEVICES
Hardware

Stevens Institute of Technology

Spring 2018

OS Access Control of HW

User land

Kernel

Application Application Application

Trusted Kernel

CPU MEMORY HW DEVICES
Hardware

Stevens Institute of Technology

Privileged

Unprivileged

Spring 2018 Stevens Institute of Technology

Example of OS-Level Access
Control to HW

Process-level Isolation
Processes cannot directly access each other’s state

Spring 2018

User land

Kernel

USER1
Application

USER1
Application

USER1
Application

Trusted Kernel

Stevens Institute of Technology

Process-level Isolation
The kernel can setup inter-process communication

Spring 2018

User land

Kernel

USER1
Application

USER1
Application

USER1
Application

Trusted Kernel

IPC
setup

Stevens Institute of Technology

Process-level Isolation
The kernel can setup inter-process communication

Spring 2018

User land

Kernel

USER1
Application

USER1
Application

USER1
Application

Trusted Kernel

IPC
setup

IPC
channel

Stevens Institute of Technology

Process-level Isolation
Same for processes owned by different users

Spring 2018

User land

Kernel

USER1
Application

USER2
Application

USER3
Application

Trusted Kernel

IPC
setup

IPC
channel

Stevens Institute of Technology

The memory-management
unit (MMU) provides virtual
memory

Execution rings separate
user and kernel space

§ Indicated by bits in CPU
status register

Processes are isolated into
different virtual memory
address spaces

Spring 2018 Stevens Institute of Technology

Hardware-based Enforcement

USER1
Application

USER2
Application

Trusted Kernel

Ring 3

Ring 0
VMEM VMEM

Back to Sandboxing

Spring 2018 Stevens Institute of Technology

Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code

generation, or through emulation
§ Security checks injected to enforce policy

Spring 2018 Stevens Institute of Technology

Building on Process Isolation
Run code in its own process space to isolate it from
browser process
Congratulations you have just executed untrusted code
from the Internet!

Spring 2018

Browser

Flash
plugin

Browser

Flash
plugin

Plugin container

IPC

Stevens Institute of Technology

Container must have limited privileges

Spring 2018

Building on Process Isolation

Browser

Flash
plugin

Plugin container

IPC

Stevens Institute of Technology

Chromium Sandboxing in
Linux
Chromium runs plugins and the rendering engine for each
tab in a separate process
Rendering processes are sandboxed
Sandboxed processes are managed by a broker process
over IPC

Spring 2018 Stevens Institute of Technology

https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md

https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md

Spring 2018 Stevens Institute of Technology

Process Sandbox: SUID
A helper binary with the setuid bit set is used

The SUID bit causes the execution of the process as root
§ Enables access to privileged kernel APIs

chroot() is used to change the process’ root directory
§ Take away file system access from the process

Process is placed in new PID namespace
§ Process cannot terminate or signal processes outside the namespace

Process is placed in new network namespace
§ Restrict network access of process

Finally drop super-user privileges

Spring 2018 Stevens Institute of Technology

Process Sandbox: User
Namespaces
User namespaces are an unprivileged API

Used as an alternative to SUID sandbox

A process is placed a new namespace

Isolates:
§ Filesystem
§ Network
§ PID
§ IPC

Spring 2018 Stevens Institute of Technology

User Namespaces
A newly launched process can be put in a new namespace

§ Through the clone() system call

Spring 2018 Stevens Institute of Technology

Reading material: https://lwn.net/Articles/531114/

Namespace Constant Isolates
Cgroup CLONE_NEWCGROUP Cgroup root directory
IPC CLONE_NEWIPC System V IPC, POSIX message queues
Network CLONE_NEWNET Network devices, stacks, ports, etc.
Mount CLONE_NEWNS Mount points
PID CLONE_NEWPID Process IDs
User CLONE_NEWUSER User and group IDs
UTS CLONE_NEWUTS Hostname and NIS domain name

Available namespaces

https://lwn.net/Articles/531114/

Process Sandbox: SECCOMP BPF
Filters the kernel APIs available to a process

Used together with previous sandboxes

Aims to protect the kernel from a malicious process

Available system calls are defined using Berkeley packet
filters

§ Filters are compiled to a program that enforces policy

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

static int install_syscall_filter(void)

{

struct sock_filter filter[] = {

/* Validate architecture. */

VALIDATE_ARCHITECTURE,

/* Grab the system call number. */

EXAMINE_SYSCALL,

/* List allowed syscalls. */

ALLOW_SYSCALL(rt_sigreturn),

#ifdef __NR_sigreturn

ALLOW_SYSCALL(sigreturn),

#endif

ALLOW_SYSCALL(exit_group),

ALLOW_SYSCALL(exit),

ALLOW_SYSCALL(read),

ALLOW_SYSCALL(write),

KILL_PROCESS,

};

struct sock_fprog prog = {

.len = (unsigned short)(sizeof(filter)/sizeof(filter[0])),

.filter = filter,

};

Spring 2018 Stevens Institute of Technology

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
perror("prctl(NO_NEW_PRIVS)");
goto failed;

}
if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)) {

perror("prctl(SECCOMP)");
goto failed;

}
return 0;

failed:
if (errno == EINVAL)

fprintf(stderr, "SECCOMP_FILTER is not available. :(\n");
return 1;

}

Limitations of OS and VM-based
Sandboxing
Context switches between broker and sandboxed
processes can be expensive

Spring 2018 Stevens Institute of Technology

Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code

generation, or through emulation
§ Security checks injected to enforce policy

Spring 2018 Stevens Institute of Technology

Example: JS/Java
The language and the runtime environment/VM is
enforcing security

§ Memory safe languages
§ Memory corruption or leakage is not possible (at least in

theory)

Access control done at the API level, for example:
§ Which files can be loaded
§ Which frames are accessible through the DOM
§ Where can code be loaded from
§ The VM acts as a reference monitor

Spring 2018 Stevens Institute of Technology

Sandboxing Methods
VM-based

§ Run entire OS in isolation

OS-based
§ Process-wide
§ Available system calls and capabilities are restricted

Language-based
§ Language isolates components

Inline reference monitor
§ Integrated into untrusted code during compilation, code

generation, or through emulation
§ Security checks injected to enforce policy

Spring 2018 Stevens Institute of Technology

Sandboxing Unsafe Languages
Pointers can be used to potential read/write arbitrary
memory

Memory accesses need to be isolated first
§ Can rarely rely on HW to contain memory operations
§ Software checks are introduced in application code

Spring 2018 Stevens Institute of Technology

Software-fault Isolation
Run multiple programs in the same address space that
run in isolation

Each program runs in a different logical fault domain

Programs can access memory within their domain
§ Ensures memory secrecy and integrity

Code within a domain cannot call/jump to code in other
domains

§ Unless through secure interfaces

Spring 2018 Stevens Institute of Technology

Software-fault Isolation
Programs can only access memory within their domain

§ Ensures memory secrecy and integrity

Spring 2018 Stevens Institute of Technology

Write OK Write OK

Domain-1 Domain-2Write
disallowed

Software-fault Isolation
Programs can only access memory within their domain

§ Ensures memory secrecy and integrity

Code within a domain cannot call/jump to code in other
domains

§ Unless through secure interfaces

Spring 2018 Stevens Institute of Technology

Function call

Domain-1 Domain-2Transfer
disallowed

Function call

Software-fault Isolation
Programs can only access memory within their domain

§ Ensures memory secrecy and integrity

Code within a domain cannot call/jump to code in other
domains

§ Unless through secure interfaces

Modify programs during compilation or by rewriting to
enforce these properties

Spring 2018 Stevens Institute of Technology

Constraining Memory
Accesses
Through boundary checking

Spring 2018 Stevens Institute of Technology

cmp 0x0300
if less Error
cmp 0x04AA
if greater Error
write x

0x0300

0x04AA

Constraining Memory
Accesses
We can improve the boundary checks

§ By allocating domains in aligned memory ranges
§ Using bit masking to help with checking

Spring 2018 Stevens Institute of Technology

tmp := x & FF00
cmp tmp 0300
if not equal Error
write x

0x0300

0x03FF

Constraining Memory
Accesses
Further improvements

§ Do not detect error
§ Constrain memory access to domain

Spring 2018 Stevens Institute of Technology

tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF

Constraining Memory
Accesses
Eliminating temporary registers is not always a good idea

Spring 2018 Stevens Institute of Technology

0x0300

0x03FF

…
x : = x & 00FF
x : = x | 0300
write x

Malicious code could
bypass masking

operations

Time Of Check
Time Of Use

(TOCTOU)

Constraining Memory
Accesses
Can malicious code bypass checks with temporary
registers?

Spring 2018 Stevens Institute of Technology

tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF

Constraining Memory
Accesses
Can malicious code bypass checks with temporary
registers?

Spring 2018 Stevens Institute of Technology

tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF

?
• tmp has not been initialized

and will probably cause the
program to crash.

• Can be forced to crash by
setting tmp to bad address
(e.g., 0xffffffff) after write

Constraining Memory
Accesses
Can malicious code bypass checks with temporary
registers?

Spring 2018 Stevens Institute of Technology

tmp : = x & 00FF
tmp : = tmp | 0300
write tmp

0x0300

0x03FF

?
This will also not work

Constraining Control Flow
Sandboxes are mainly to used to constrain untrusted code
so obviously this is a general problem

Spring 2018 Stevens Institute of Technology

…
jmp ptr

?

Constraining Control Flow
Similar tricks can be applied

Spring 2018 Stevens Institute of Technology

…
jmp ptr

…
tptr : = ptr & 00FF
tptr : = tptr | 0300
jmp tptr

…
call ptr

…
tptr : = ptr & 00FF
tptr : = tptr | 0300
call tptr

…
ret ?

Constraining Control Flow
Naive approach

Spring 2018 Stevens Institute of Technology

ret

pop tptr
tptr : = tptr & 00FF
tptr : = tptr | 0300
jmp ptr

CISC Trouble
Constraining within the domain is not enough

§ Instructions may be hidden within instructions in CISC
programs

Spring 2018 Stevens Institute of Technology

ins ins ins ins ins ins

ins ins ins ins ins ins

ins ins ins ins ins ins

Pseudo Fixed-size Instructions
Align every “pseudo” instruction on a 32-byte boundary

§ 0x1F bits are always zero
Force pointer so it can only point to a pseudo instruction

Spring 2018 Stevens Institute of Technology

pop tptr
tptr : = tptr & 00E0
tptr : = tptr | 0300
jmp ptr

Benefits of SFI
No context switches

Faster if run-time checks are faster than context switching

Spring 2018 Stevens Institute of Technology

Google Native Client (NaCL)
A sandboxing technology for running a subset of Intel
x86, ARM, or MIPS native code in a sandbox

https://developer.chrome.com/native-client

NaCL programs are compiled with modified compiler

Supports subset of language

Produces sandboxed programs
Spring 2018 Stevens Institute of Technology

https://developer.chrome.com/native-client

Escaping Sandboxes
Exploitation of a sandboxed component grants limited
control

But sandboxes may have bugs

Multiple exploits in different components are usually
required

In 2012’s pwnium competition 14 bugs where needed to
take down chrome

§ http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-
1.html

Spring 2018 Stevens Institute of Technology

http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html

Spring 2018 Stevens Institute of Technology

Multiple Layers of Sandboxes

Sandboxed process

Sandboxed
component

Original process

Other Use Cases for Isolation
Process-level Isolation from the OS is frequently used to
realize the principle of least privilege in servers

Examples: SSH, Web servers

Spring 2018 Stevens Institute of Technology

Spring 2018 Stevens Institute of Technology

SSH

SSH
listening
process

SSH request
serving
process

Connections

Authenticate
SSH request

serving
process

SSH request
serving
process

fork()
Runs as root

How is access control done here?

Spring 2018 Stevens Institute of Technology

SSH

SSH
listening
process

SSH request
serving
process

Connections

Authenticate
SSH request

serving
process

SSH request
serving
process

fork()
Runs as root

setuid()/seteuid()

Process drop privileges and
run as the authenticated user

