
SIDECAR: Leveraging Debugging Extensions in Commodity Processors to Secure
Software

Konstantinos Kleftogiorgos1, Patrick Zielinski1, Shan Huang1, Jun Xu2, Georgios Portokalidis3
1Stevens Institute of Technology, Hoboken, NJ, USA

2University of Utah, Salt Lake City, UT, USA
3IMDEA Software Institute, Madrid, Spain

Abstract—The increased parallelism in modern processors has
sparked interest in offloading security policy enforcement to
processes or hardware operating in parallel with the main
application. This approach can reduce application latency,
enhance security, and improve compatibility. However, existing
software solutions often incur high overheads and are suscep-
tible to memory corruption attacks, while hardware solutions
tend to be inflexible and require substantial modifications to
the processor. In this paper, we present SIDECAR, a novel
approach that offloads security checks to run concurrently with
applications by leveraging the debugging infrastructure avail-
able in commodity processors. Specifically, we utilize software-
driven logging (SDL) extensions in Intel and Arm processors
to create secure, append-only channels between applications
and security monitors. We build and evaluate a prototype
of SIDECAR for the x86-64 and Aarch64 architectures. To
demonstrate its utility, we adapt well-known security de-
fenses within SIDECAR, providing control-flow integrity (CFI),
shadow call stacks (SCS), and memory error checking (ASAN).
Our evaluation shows that these extensions perform better on
the Intel architecture. In terms of defenses, SIDECAR reduces
the latency of CFI in the tested real-world applications by an
average of 30%, offers enhanced security with similar overhead
for SCS, and is versatile enough to support complex defenses
like ASAN. Furthermore, our security monitor for CFI+SCS
is 30 times more efficient compared to previous work.

1. Introduction

Software often contains bugs resulting in undefined be-
havior [1]. Systems software, predominantly authored in
memory-unsafe languages such as C and C++, specifically
suffers memory-related errors [2], [3], such as overflows
and use-after-free (UAF) bugs, leading to severe security
issues such as arbitrary code execution [4], [5], [6], [7], [8],
[9], [10], data leaks [11], and privilege escalation [12]. To
effectively detect or mitigate the exploitation of these bugs,
prior works [13], [14], [15], [16], [17], [18], [19], [20] have
introduced a variety of approaches for introducing security
checks into programs at compile or run time, unfortunately
not without problems. First, they can impose high memory
and performance overheads [14]. In other cases [20], storing
runtime metadata in the same address space as the appli-

cation allows the subversion of the defense. Finally, some
approaches [21], [22], [23], [24] offer reduced compatibility,
e.g., by requiring recompilation of all software components
(e.g., libraries), leading to slow (or no) adoption.

A new paradigm for addressing these issues is to of-
fload security operations to spare cores, which exploits the
increasing parallelism available in multi-core processors.
Software-only approaches [25], [26], [27], [28], [29] in
this direction involve modestly instrumenting applications
to relay runtime state to a parallel-running monitor process.
Despite performance improvements, they still induce high
overheads and face security issues of their own, as they
employ shared memory for transferring data, which can be
corrupted before being processed by the monitor.

On the other hand, hardware approaches [30], [31], [32],
[33], [34], [35] offer strong isolation by introducing new
processor designs that automatically log runtime data for use
by separate monitor process(es) or core(s). However, they
necessitate substantial microarchitectural alterations, which
has obstructed their adoption by manufacturers. Works lever-
aging existing hardware features, like execution tracing [36],
[37], [38], [39], [40], [41], [42] can be immediately de-
ployed, but are not versatile in terms of policies they can
support and require significant processing resources for the
monitor due to the high volume of data produced by the
processor.

This paper presents SIDECAR, a system that leverages
a less explored functionality of processor debugging ex-
tensions to offload security operations from applications to
spare cores. Specifically, we utilize software-driven logging
(SDL) capabilities provided by Intel’s Processor Trace (PT)
and Arm’s CoreSight architectures through the PTWRITE
instruction and the System Trace Macrocell (STM). SDL
enables programs to log data in an append-only manner,
either to an operating system-managed memory queue or
directly to the hardware input port of a co-processor. These
extensions are safer than software-only approaches that rely
on shared memory-based communication. Additionally, they
are versatile due to their software-driven nature, allowing
support for a broad range of security policies. Furthermore,
they can be efficient as software controls what information
is logged, thereby reducing the load on the security monitor.

To demonstrate the above, we implemented SIDECAR
for x86-64 and Aarch64 Linux systems. SIDECAR provides

secure, append-only queues between C/C++ applications
and monitors processes in an efficient manner. Our de-
sign accommodates both architectures, which differ in cer-
tain key aspects, like how data are logged and stored. To
show the performance, security, and versatility of SIDECAR,
we modify the designs of three well-established defenses
that modify and harden applications at compile time, i.e.,
LLVM’s CFI, SCS, and ASAN, to offload their operations
to a monitor process. We also design and build monitors for
each of these defenses.

We evaluate SIDECAR in terms of security and cor-
rectness, and performance. We use LLVM’s testing en-
vironment [43] and the RIPE64 [44] security benchmark
to establish that the offloaded versions of the defenses,
coined SIDECFI, SIDESTACK, and SIDEASAN, operate
correctly and capture the same attacks as their inlined
versions. Note that SIDESTACK by design does not suffer
the weaknesses of LLVM’s SCS. We evaluate performance
using SPEC CPU2006, SPEC CPU2017 and a set of real-
world applications and servers (Apache, Bind, Lighttpd,
memcached, and Chromium). We find that, on average,
SIDECFI outperforms LLVM-CFI by 30%. Finally, we eval-
uate the resources required by the monitors and find that they
are lightweight. Compared with prior work, GRIFFIN [37],
which employed execution tracing extensions and required
six cores to monitor a single application thread, SIDECAR
requires approximately 20% of a core to monitor a single
application thread (average over SPEC CPU2006). Running
ASAN over SIDECAR, demonstrates that versatility of the
approach, but it also revealed the bandwidth limits of SDL
in current processors as it incurs higher overheads.

In summary, the main contributions of this paper are:
• We study two processor architectures with software-

driven logging facilities: Intel PT and Arm CoreSight,
used to create secure and efficient inter-process commu-
nication channels.

• We design and build SIDECAR on x86-64 and Aarch64
Linux, a system that leverages SDL to allow the of-
floading of security checks from applications to monitor
processes running in parallel.

• We develop three defenses that apply security checks in
parallel to the application, offering control-flow integrity
(CFI), shadow call stacks (SCS), and memory error de-
tection (ASAN). They consist of an LLVM compiler-
based component that modifies programs to log the data
necessary to apply the check in parallel, and a monitor
process that receives the data and enforces the relevant
security policies.

• We evaluate SDL on a 24-core Intel i9-13900K and
a quad-core ARM Cortex A53, and find that the Intel
processor offers significantly better performance.

• We evaluate SIDECAR and its defenses on the Intel archi-
tecture using the SPEC CPU2017 and SPEC CPU2006 in-
teger benchmarks, along with five real-world applications
and servers. The results are compared against their inlined
counterparts, including LLVM’s CFI [45], SCS [46], and
ASAN [14], as well as prior works, FineIBT [47] and
GRIFFIN [37].

The rest of the paper is organized as follows. §2 provides
background information and highlights the advantages of de-
coupling security checks from applications using processor
debugging extensions. The threat model for SIDECAR is in
§3. Its design and implementation are presented in §4, while
§5 describes the defenses we developed on top of it. The
evaluation of SIDECAR is in §6.

2. Offloading Security Checks with SIDECAR

2.1. Overarching Concept

Inlined checks

Decoupled checks
Decoupling
code

Security
checks

Sensitive
operation

Waiting

Speedup

Detection lag

Ap
p

M
on

ito
r

Ap
p

Figure 1: Decoupling security checks from execution.

Figure 1 illustrates decoupling security checks from
execution. Instead of injecting checks before sensitive oper-
ations (e.g., an indirect call or memory access) into the ap-
plication code, these checks are moved to a separate monitor
process running in parallel. The application is instrumented
with lightweight operations that transfer the necessary run-
time data to the monitor. This can reduce runtime overhead
if the decoupling code executes faster than the checks it
replaces. However, this approach introduces a trade-off:
security policy enforcement becomes asynchronous, creating
a small detection lag between a violation and its detection.
This lag can be eliminated by making the application wait
for the monitor to complete all checks before proceeding
with sensitive operations, like a system call, but this sacri-
fices some performance gains.

Prior work in this area can be classified in software [25],
[26], [27], [28], [29] and hardware [34], [32], [35], [30],
[31], [48], [33] approaches. Software solutions are fre-
quently policy specific and transfer data through shared
memory buffers, suffering the risk of tampering by an
adversary before the checks are performed. Hardware ap-
proaches, on the other hand, face adoption hurdles in high-
performance processors.

2.2. Using Processor Debugging Extensions

SIDECAR leverages processor debugging extensions to
transfer data from the application to monitors. Such exten-
sions are already available in modern processors and, hence,
do not require any hardware modifications. Currently, both
Intel and ARM provide them under the names Intel Proces-
sor Trace (PT) [49] and ARM CoreSight (CoreSight) [50],
respectively. One of the facilities provided by these exten-
sions is transparent execution tracing, where the proces-
sor automatically logs every non-deterministic control-flow

transfer. This capability has received ample attention by past
works [36], [37], [38], [39], [40], [41], [42]. However, even
though it imposes minimal overhead (<4%) on applications,
the data produced are voluminous and require significant
processing resources for analysis, while it can only support
policies related to control flow.

SIDECAR instead leverages software-driven logging
(SDL). It allows the programs being traced to inject custom
data into the trace stream, even when execution tracing is
not active. CoreSight utilizes the System Trace Macrocell
(STM) and memory-mapped I/O (MMIO) ports for this pur-
pose, where a program can write data to be appended in the
stream, whereas PT introduces the PTWRITE instruction [51]
for the same purpose. The logged data are stored in the
same manner as with execution tracing, which, however,
does not need to be active. The data written by each core
are stored into a memory buffer that can be accessed by
the operating system (OS) kernel. Alternatively, some sys-
tems (mainly Arm) allow you to directly route data to a
hardware port for processing by a co-processor, like a Field
Programmable Gate Array (FPGA). This essentially creates
a secure, append-only channel for sending data from the
application to a monitor.

TABLE 1: Comparison of related work with SIDECAR.

Approach Availab. Tamper Safe Versatility

ShadowReplica [25] ✓ ✗ ✗
TaintPipe [26] ✓ ✗ ✗
StraightTaint [27] ✓ ✗ ✗
CAB [28] ✓ ✗ ✗
PIPA [29] ✓ ✗ ✗

LBA [30], [31] ✗ ✓ ✓
FlexCore [32], [33] ✗ ✓ ✓
GuardianCouncil [34] ✗ ✓ ✓
HERQULES [35] ✗ ✓ ✓

GRIFFIN [37] ✓ ✓ ✗
SIDECAR (this paper) ✓ ✓ ✓

The use of SDL extensions has been underexplored. In
this paper, we explore the capabilities and challenges of
using this feature to offload security checks and improve
existing inlined defenses. SDL systems and by extension
SIDECAR exhibits the following key properties for decou-
pling security checks:
Property 1: Availability. The extensions are already present
in modern processors.
Property 2: Tamper Safe. The data are logged in append-
only fashion outside the application’s memory space and are
accessible only by the kernel.
Property 3: Versatility. The software controls data logging,
supporting the implementation of different types of policies.

Compared with prior work, SIDECAR is the only ap-
proach to concurrently have all these properties, as high-
lighted in Table 1.

2.3. Benefits

SIDECAR can generally reduce application latency by
offloading security checks to a parallel monitor. However,
there are other important benefits too. We examine three
popular defenses, CFI, SCS, and ASAN to highlight them.

Benefit 1: Hiding Latency of Slow Checks. CFI [52], [53],
[54], [55] is a popular defense that aims to ensure that the
control flow of a program remains within its valid control
flow graph (CFG). Forward-edge CFI [55], [53], specifically,
focuses on indirect calls (icall) and jumps (ijmp) that use
operands from (corruptible) memory. These correspond to
calls using function pointers, virtual method calls in C++,
and even jump tables, such as the ones generated by the
compiler to implement switch statements. An efficient and
popular implementation of forward CFI is currently offered
by the Clang/LLVM toolchain [45] (LLVM-CFI), which can
ensure that indirect calls target functions of the same type
as the call site.

lea rax, [sym.bar
mov rcx, rbx
sub rcx, rax
rol rcx, 0x3d
cmp rcx, 2
jae slow

; slow
movabs rdi, 0x47c...
mov rsi, rbx
call.__cfi_slowpath
jmp icall

; icall
; protected icall
xor edi, edi
call rbx

fa
il

success

violation

O

F S

Figure 2: An indirect function call with LLVM-CFI checks.

Figure 2 depicts the code introduced for an icall
(call rbx) on x86-64 in code block O. By carefully po-
sitioning functions of the same type together, LLVM-CFI
simplifies the check to a range and alignment check, as
shown in block F. Offloading such checks may deliver
small gains, however, to support all transfers to dynamically
shared objects (DSOs), it also introduces a slow path that
performs a more thorough validation, as shown in block S,
which is executed when the fast check fails. The cost of slow
paths can vary depending on the valid function targets in
a DSO, as confirmed by our micro-benchmarks comparing
intra-DSO and cross-DSO function calls. Fast path checks
averaged ∼130 cycles (∼1000 cycles cold), while slow path
checks ranged from 170 to 500 cycles (up to 3000 cycles
cold). With SIDECAR, we can offload all or only slow path
checks, depending on the application, to hide the latency of
checks.

Benefit 2: Improved Security. SCS [20], [56] is an estab-
lished defense for detecting corruption of return addresses
on the stack and enforcing the control-flow integrity of
backward-edges. Multiple works have shown that it is a
necessary compliment to CFI [6], [9], [52]. The basic idea
is to maintain a shadow stack, where the return addresses
are duplicated, and their integrity is checked upon function
return. While there have been different implementations, the
Clang/LLVM implementation [46] has the advantage that it
can be deployed incrementally and works even when some

components (e.g., libraries) have not been compiled with
SCS support.

mov r10, [rsp]
xor r11, r11
add gs:[r11], 8
mov r11, gs:[r11]
mov gs:[r11], r10

xor r11, r11
mov r10, gs:[r11]
mov r10, gs:[r10]
sub gs:[r11], 8
cmp [rsp], r10
jne trap

su
cc
es
s

vi
ol
at
io
n

Function prologue

; trap
ud2

; ret
ret

Function epilogue

gs SSP

Memory (RW)

stack

shadow

Figure 3: Operations added at function prologue and epi-
logue by LLVM-SCS to maintain a shadow stack.

Figure 3 shows the code introduced by LLVM-SCS at
each function prologue and epilogue. At function entry, the
shadow stack pointer (SSP) is accessed using the gs register
to push a copy of the return address in the shadow stack. At
function exit, the SSP is accessed again to pop and check
the return address with the one stored in the program stack.
Both the shadow stack and the SSP are, however, stored in
the application’s memory space, making them vulnerable to
corruption attacks [57], [58]. With SIDECAR, SCS metadata
are stored outside the application offering increased security.

Benefit 3: Incremental Deployment. Control-flow enforce-
ment technology (CET) [59] by Intel supports CFI but is
weaker than LLVM-CFI. Recent work [47] enhances CET
to match LLVM-CFI. CET adds a new instruction, endbr,
in the prologue of every function (Fig. 4), ensuring that
the instruction following an indirect call or jump (ijmp)
is an endbr. While this is efficient, if any function called
indirectly has not been build with CET support, it causes
a violation and program termination. To avoid this, loaders
(e.g., Linux) disable CET if any module (e.g., shared library)
doesn’t support it.

<foo>:
endbr64
...

; icall
call rbx

IBT prologue

<bar>:
push rax
...

Regular prologue

αpplication crash

Function call

Figure 4: An indirect call targeting functions with and
without Intel CET support.

CET’s shadow stack support also faces compatibility
issues with libraries not built with CET, particularly when
exceptions or functions setjmp/longjmp are used. In con-
trast, SIDECAR supports incremental deployment of de-
fenses, allowing the monitor to check module support for
CFI or SCS and act accordingly (e.g., unwind the shadow
stack or allow the call). Such actions are prohibitively ex-
pensive to inline in application code.

Benefit 4: Supports Complex Policies. Address sani-
tizer [14] (ASAN) is a popular sanitizer that tracks memory
allocations during the program’s lifetime using metadata
stored in a large shadow memory area to detect invalid
memory accesses. As shown in Fig. 5, when a heap memory

push rdx
call __asan_report_load8

; original load
mov rax, [rdi]
...

call malloc

R
violation

C
mov rax, rdi
shr rax, 3
cmpb 0x7fff8000[rax], 0
jne trap

O
success

<asan_malloc>:

shadow mem

M
em

or
y

Red zones

Heap object

Figure 5: ASAN detecting invalid memory accesses.

object is allocated, red zones are also allocated around it
and shadow memory is updated accordingly. Every memory
access, such as the load in block O, is instrumented during
compilation with a check, like the one in block C. It consults
shadow memory to determine if a red zone is accessed, in
which case it detects a violation and reports the error (block
R). Stack and global memory objects are similarly modified
and red zones added around them.

Because every memory access is instrumented, ASAN
can be very slow, so currently it is mostly used in
fuzzing [60]. Moreover, it includes a multitude of operations,
as it performs many different types of operations to keep
track of memory usage and update shadow memory, which
cannot be decoupled by domain specific approaches [25],
[37]. However, SIDECAR is highly versatile and allows us to
design elaborate protocols for supporting complex defenses
and policies.

3. Threat Model

SIDECAR provides a general-purpose framework for de-
coupling security from applications and running them in
parallel. We assume a strong adversary capable of arbitrary
memory reads and writes through application vulnerabilities,
potentially leading to arbitrary or remote code execution
(ACE/RCE) [5], [4], [7], [9], [10]. However, we assume the
adversary cannot compromise the hardware or OS [61], as
protecting these is beyond our scope. Between application
compromise and detection by the monitor, the adversary
may send bogus data to the monitor, but cannot tamper with
already sent data due to the append-only communication
channel, ensuring eventual attack detection.

Our defense mechanisms and security policies focus on
C/C++ applications that suffer from one or more memory
errors [3], [2]. We assume a contemporary OS support-
ing non-executable memory [62] and enforcing the WˆX
policy [63] (i.e., no memory page can be both writable
& executable). This prevents existing code alteration and
new code injection before the monitor can detect control by
the adversary. While security mechanisms like ASLR [64],
stack-smashing protection [65], and code randomization
techniques [66], [67], [68] may be applied, they are not
required for SIDECAR’s operation.

SidecarAppend(data)
MMIO

PTWRITEAp
p

sidecar-rt

M
on

ito
r

Setup
notifications, …

Setup

notifications, …

Ke
rn

el
 D

riv
er

manager

RRP
WRP

RRP
WRP

RRP
WRP

RRP
WRP

Memory mapped

Figure 6: Overview of SIDECAR.

4. SIDECAR Design and Implementation

Figure 6 illustrates the high-level design of SIDECAR.
Applications communicate with a driver to activate pro-
cessor extensions and send data to the security monitor
running in parallel. Data transmission is handled through
a new primitive, SidecarAppend, which provides append-
only logging, tamper-resistant logs, and support for log-
ging arbitrary and thread-contextual data. Monitor processes
communicate with the driver to access the logged data, send
violation notifications, and perform management tasks like
sequencing multithreaded operations or spawning threads
when needed. We have implemented a prototype of SIDE-
CAR for x86-64 and Aarch64, described in detail below.

4.1. Application Interface

An application that wishes to make use of a security
monitor must first communicate with the driver. The setup
serves two purposes: (i) enabling the debugging extensions
and allocating the necessary memory in the kernel for
storing the trace data, and (ii) enabling the SidecarAppend
primitive for the application. To perform these two tasks, we
introduce a runtime library, sidecar-rt, that applications
can link against.

Setup is transparent to the application and essentially
involves calling an initialization function that communicates
with the driver using an IOCTL operation. However, de-
pending on the architecture the SidecarAppend primitive
is implemented differently. On Intel systems, it simply cor-
responds to the PTWRITE instruction, which can be used
after completing setup. On the other hand, on Arm writing
to the trace is done through memory-mapped I/O (MMIO)
registers. Specifically, a number of ports are offered over
MMIO. There are some minor differences between the ports
available in different ARM systems, but they essentially
offer the same functionality, appending the number of the
port and the data written to it to the trace. So on Arm
systems, the runtime also maps the corresponding STM’s
MMIO-mapped ports to the application’s address space.
SidecarAppend then corresponds to a a simple store oper-
ation: *((uint64_t *)STIM_PORT_ADDR) = data;

Finally, the runtime library is also responsible for noti-
fying the driver when the application spawns a new thread
or process. This is done by interposing on known APIs,
like pthread create of POSIX threads and fork and
notifying the driver through an IOCTL operation.

4.2. Trace Collection

Both PT and CoreSight can be configured to store data
in ring buffers, essentially, a sequence of physical pages
that are treated as a contiguous ring buffer by the processor.
These are allocated and configured by the SIDECAR driver,
when an application requests its services. However, PT uses
a separate ring buffer for each core, while CoreSight uses
a single buffer, shared by all cores. Here we explain how
SIDECAR handles these two disparate designs, as well as
common aspects between the two.
Intel PT. When a new application is launched, SIDECAR
allocates a new ring buffer and associates it with the core
the application thread is currently running on. At that point,
we need to either pin the application thread to that specific
core or hook the scheduler to track when the thread migrates
to another core, so that we disassociate the buffer from
the old core and associate it with the new one. We have
implemented the first option, but he second option could
also be implemented with moderate engineering effort [69].
When additional threads or applications are launched, the
driver is notified and a new ring buffer is allocated and
associated with that thread and core. This way we have a
one-to-one mapping between threads and ring buffers.
Arm CoreSight. When the first application is launched,
SIDECAR allocates a single ring buffer and attaches it to
the CPU. All cores use this same buffer for logging data.
To differentiate the originating thread of data in the buffer,
we use the context ID registers, which can be set per thread
to a unique value identifying the thread. The processor adds
a special data packet with the context ID of the thread that
generated the data for each write. When additional threads
or applications are launched, the driver is notified and the
context ID register of that thread is set to a unique value.
This way, data within the buffer can be associated with their
originating thread.
Tracking Ring Buffer Status. Tracking buffer status is
crucial for SIDECAR to prevent data loss when high system
load risks the processor overwriting unprocessed data. SIDE-
CAR uses two pointers: the read ring buffer pointer (RRP)
and the write ring buffer pointer (RWP). Both architectures
provide a hardware RWP (via MMIO on Arm and MSR
on Intel), but SIDECAR maintains a software copy, updated
by interrupts when a buffer page fills. When threads or
applications exit, SIDECAR updates this copy and notifies
the monitor. The RRP, managed in software, indicates the
next byte to process. Monitor threads poll the RWP at
intervals to process data between RRP and RWP. To keep
the RWP from overtaking the RRP, the driver uses interrupts
and temporarily halts threads if buffer space drops below
two pages, resuming them when space becomes available.

4.3. Monitor Interface

Security monitors communicate with the driver to regis-
ter and gain access to the data logged by applications. They
do not need to run as privileged processes, after opening the
driver. To facilitate the creation of monitors, we provide a
Manager library for performing common tasks. At startup,
the Manager communicates with the driver to notify it of
its existence and waits for events, through a custom IOCTL
operation. Once an application is launched, a message is
received and the Manager spawns a new monitor thread to
start processing its data. While monitor threads are running,
the Manager still listens for other events from the driver.
Besides the launch of a new application, this may include
events about new threads or processes spawned by processes
already monitored. An IOCTL is also used by monitor
threads to report a security violation to the driver, which can
then take appropriate action and terminate the application.
If no violations are captured, the Manager is notified when
the application exits through a signal from SIDECAR, after
the latter ensures that all trace data has been consumed by
the monitor threads.

The monitor Manager also needs to accommodate the
architectural differences between Intel and Arm, which we
present below.

Intel PT. Whenever a new application or thread is spawned,
the Manager maps its ring buffer and RWP/RRP pointers
into the monitor’s address space. The RWP is mapped read-
only and updated only by the kernel driver. Creating a new
monitor thread for each application/thread depends on the
specific monitor, but on Intel systems, it’s straightforward to
use a different thread for each buffer, even if they run on the
same core. The monitor updates the RRP after processing
chunks of data, not after each byte, to avoid performance
degradation due to cache coherency protocols in multi-core
processors.

Arm CoreSight. Since there is only one buffer, this needs to
only be mapped once in the monitor’s address space. Again,
whether one or more monitor threads will be used depends
on the monitor implementation. The SIDECAR Manager
offers functionality to de-multiplex the data in the buffer
based on the context ID of the thread that produced it and
store it in separate buffers. This way, each monitor thread
can operate on its own buffer, but memory copying can put
a strain on the memory bus.

Trace Decoding. Both CoreSight and PT use distinct en-
codings for logged data. Although open-source decoding
libraries exist [70], [71], we implemented our own decoders
to enhance performance. The Manager library handles de-
coding, optimized for speed by focusing on specific trace
packets and their operation codes. Our PT decoder, a stream-
lined, manually inlined version of Intel’s official decoder,
processes data in a single for-loop with switch cases, sig-
nificantly speeding up the decoding process compared to
Intel’s function-based structure.

5. Redesigning Sanitizers for SIDECAR

This section outlines the security policies we developed
for SIDECAR, integrated within the LLVM toolchain (v12)
and comprising roughly 3,600 lines of code. Our prototype
redesigns LLVM’s runtime sanitizers by offloading security
checks to a monitoring thread.

5.1. SIDECFI: Forward-Edge CFI

LLVM-CFI (Figure 2) enforces checks on indirect and
virtual calls to ensure that the function invoked at runtime
matches the expected type (i.e., has the same signature)
as the call site. Each indirect call is assigned a Type ID
based on its signature, and the same applies to each function
referenced by a pointer. For C++ virtual calls, the Type ID
corresponds to the dynamic type of the object used in the
call. These checks ensure that the Type ID assigned to the
call site aligns with the Type ID of the target function or
object, thus enforcing type safety during execution.

SIDECFI builds on this concept by introducing a hashed
version of the LLVM Type ID, compressed into 14 bits to
fit within the 64-bit SidecarAppend primitive for efficient
transfer. The hash is calculated through a series of bitwise
operations that reduce the original 64-bit Type ID. This
approach allows SIDECFI to replace LLVM’s inline CFI
checks with instrumentation that logs the hashed 14-bit Type
ID along with the 48-bit target address of indirect and virtual
calls. For indirect calls, the target is the function address,
while for virtual calls, it is the vTable address corresponding
to the dynamic type. SidecarAppend is inserted during
Link-Time Optimization (LTO), effectively replacing the
original LLVM-CFI check instrumentation and enabling a
decoupled enforcement mechanism.

To enforce these checks, the SIDECFI monitor requires
metadata about the allowed targets and their Type IDs.
During compilation, the offset of each function or vTable is
extracted, along with its 14-bit hashed Type ID, and stored
in a typemap file associated with each binary object. A
SHA-1 hash is generated for each typemap file to verify its
validity. SIDECFI intercepts ‘dlopen‘ and ‘dlclose‘ system
calls to identify the loading and unloading of DSOs and
to extract their base addresses, which are needed to trans-
form function offsets into runtime addresses. Whenever a
new DSO is loaded at runtime, SIDECAR is notified and
provided with the path to the binary and its base address.
This information is then passed to the SIDECFI monitor,
which uses it to locate the corresponding typemap file
and calculate the runtime target addresses using the base
address. The monitor loads this metadata into an internal
hashtable. As the monitor receives runtime packets from the
SidecarAppend primitive, it verifies that the target’s Type
ID matches the expected values stored in its hashtable. Any
mismatches indicate a violation, which are reported to SIDE-
CAR, prompting the application to be stopped. When a DSO
is unloaded, the monitor is notified, and the corresponding
entries are removed, disallowing those targets and their Type
IDs.

5.2. SIDESTACK: Shadow Call Stack

SCS (Figure 3) provides backward-edge protection by
maintaining a shadow stack that mirrors the application’s
stack. SIDESTACK decouples SCS by offloading shadow
stack management to a monitoring thread, which requires
runtime metadata for each function’s return address. At each
function prologue, the return address is logged using the 32-
bit SidecarAppend primitive and sent to the monitor. Sim-
ilarly, it is logged and verified at each epilogue. To reduce
bus load, we compress the 48-bit return address by XORing
the upper 18 bits with the lower 30 bits, resulting in a 30-bit
hash. This SidecarAppend replaces the original SCS push
and pop instructions during Link-Time Optimization (LTO).
The monitor uses this runtime metadata to maintain its own
shadow stack, ensuring return address integrity.

A key feature of SIDESTACK is its ability to handle
discrepancies between the program’s return address and the
shadow stack’s top hash. Such mismatches can occur during
C++ exception handling, which requires stack unwinding.
In these cases, the monitor searches the shadow stack for a
matching hash to adjust the stack correctly. If no matching
hash is found, SIDESTACK raises an alert to indicate a
potential security violation, signaling that the return address
may have been tampered with or altered unexpectedly.

To optimize performance, SIDESTACK uses a “hybrid”
mode for leaf functions, where the return address is stored
in a free register upon entry and compared with the stack’s
top address upon exit. Non-leaf functions and leaf functions
lacking a free register use the original instrumentation.

5.3. SIDEASAN: Address Sanitizer

ASAN (Figure 5) detects memory errors by maintaining
a shadow memory and instrumenting memory accesses to
update it and perform checks. SIDEASAN decouples ASAN
by offloading shadow memory operations to a monitoring
thread. To facilitate the decoupling of ASAN’s shadow mem-
ory, metadata including memory addresses, access sizes,
operation types (read/write), details about memory alloca-
tion and deallocation, heap and stack poisoning, and other
memory-related operations need to be transferred to the
monitor. It is important to mention that red zones are main-
tained in the application’s address space, but their poisoning
and validation operations are offloaded to the monitor.

SIDEASAN modifies the ASAN LLVM pass and run-
time library to offload shadow memory operations to
a monitoring thread, encoding them into messages us-
ing SidecarAppend. Specialized messages handle frequent
small memory accesses to reduce overhead. At runtime, the
monitor processes these messages, updating shadow mem-
ory for heap and stack operations, poisoning and validating
accesses, and maintaining red zone bits. Use-after-free errors
are detected by marking freed memory as non-addressable.
Violations trigger alerts to SIDECAR, which halts application
execution.

To support multithreaded applications, SIDEASAN em-
ploys dedicated software monitor threads for each applica-

tion thread. It is important to note that all monitor threads
share a single shadow memory and thus special care must be
taken to avoid false positives by ensuring the orderly execu-
tion of ASAN poisoning and validation checks. SIDEASAN
achieves this by enabling timestamps in fixed intervals, that
allow monitor thread operations to synchronize with each
other using semaphores.

6. Evaluation

The evaluation aims to answer the following questions:
(i) How does SDL perform? (ii) How effective are the
defenses implemented in SIDECAR? (iii) Does it reduce
application latency caused by defenses?

We have implemented SIDECAR for both Intel and Arm
architectures and use the following three platforms in the
evaluation: Two workstations: a 24-core Intel i9-13900K at
5.20 GHz with 128GB DDR4 RAM and a Samsung SSD
980 PRO 1TB (intel) and a 16-Core Intel i9-12900K at
5.20 GH with 128GB DDR4 RAM and 2 x 1.92 TB NVMe
SSD (intel2), both running Debian 11 and with hyper-
threading disabled. An Arm development board (db410c)
with a 4-core ARM Cortex A53 at 1.2 GHz with 1GB
LPDDR3 RAM and 8GB eMMC 4.5 (Arm), running Linaro
Linux 5.10.7. The benchmarks we use are: the integer bench-
marks in the SPEC CPU2017 and SPEC CPU2006 suites,
real-world applications (Chromium v90.0.4396.0, Apache
Httpd v2.4.58, Lighttpd v1.4.76, Memcached v1.6.9, and
Bind v9.19.24), and the utilities pbzip2 v1.1.13 and pigz
v2.8.0.

6.1. SDL on Intel vs. Arm

To answer the first question, we run a micro-benchmark
measuring the average CPU cycles for a SidecarAppend
operation on STM and PT, as we increase the number
of consecutive operations. Cycle counts are collected via
pmccntr el0 on Arm and rdtsc on Intel, comparing
results to a standard memory-backed circular buffer. The
tests are conducted on Intel 2 and Arm. Intel processors
have performance (P-cores) and efficiency (E-cores) cores,
where P-cores support hyper-threading and higher energy
usage, and E-cores prioritize efficiency.

Results for Arm and Intel P-cores are shown in Figure 7.
Initially (<16 writes), average duration decreases as the
cycle counter overhead is spread across more operations.

8 64 128 192 256 320 384 448 512
Number of Writes

0

25

50

75

100

125

150

Av
er

ag
e

Cy
cle

s /
 W

rit
e

DragonBoard 410c

Memory
STM

8 64 128 192 256 320 384 448 512
Number of Writes

0

2

4

6

8

10
Intel i9-12900K

Memory (P)
PTWRITE (P)
Memory (E)
PTWRITE (E)

Figure 7: Comparison of SDL on Arm and Intel.

8 64 128 192 256 320 384 448 512
Number of Writes

0

4

8

12

16

20

Av
er

ag
e

Cy
cle

s /
 W

rit
e

PTWRITE (Logical Core 0)
PTWRITE (Logical Core 1)

Figure 8: Logical cores sharing the same P-core performing
simultaneous PTWRITE operations.

On Arm, the cost grows logarithmically with more writes,
while on Intel P-cores, it stabilizes at ≈7 cycles after a jump
at 32 writes. This behavior likely reflects the size of internal
buffers, preventing data loss. On Intel E-cores, performance
matches regular memory writes, but data loss occurs beyond
64 consecutive writes.

We also examined PTWRITE contention on two logi-
cal cores sharing a physical core, as shown in Figure 8.
Throughput stabilized, but with higher spike magnitudes, in-
dicating minor contention due to shared PT hardware. Given
Arm ’s high overhead and data loss on E-cores, we focus
the rest of the evaluation on P-cores with hyper-threading
disabled to minimize noise from shared PT hardware.

6.2. Security and Correctness

To evaluate the effectiveness of SIDECAR defenses, we
need to show: (i) that they retain detection capabilities, and
(ii) that no new vulnerabilities are introduced.

6.2.1. Detection Capabilities
To test the ability to detect attacks, we use the

RIPE64 security benchmark [44] to test SIDECFI and
SIDESTACK, and the LLVM Integrated Tester (LIT) [43]
to test SIDEASAN.
RIPE64. The RIPE64 suite extends the original RIPE se-
curity suite [72] for evaluating security systems designed
to mitigate buffer overflow exploits, with Address Space
Layout Randomization (ASLR) [64] enabled. We tested the
suite with SIDECFI, SIDESTACK, LLVM-CFI, and LLVM-
SCS defenses to assess their effectiveness. Out of all the
attacks in the RIPE64 suite, we specifically selected 1,350
forward-edge control flow attacks. LLVM-CFI successfully
detected all of these attacks, and we used this as a baseline to
confirm that SIDECFI effectively captured all 1,350 attacks
as well, demonstrating the equivalent protection provided
by SIDECFI. Additionally, LLVM-SCS and SIDESTACK
both stopped 154 backward-edge attacks, such as Return-
Oriented Programming (ROP) and return-to-libc.
LLVM Integrated Tester. LIT includes tests to verify
ASAN functionality. We selected 150 tests focused on
ASAN’s core features, excluding tests related to other sani-
tizers like LSan [73] or features not related to bug detection.
Since ASAN functionality now runs on the monitor, we
adapted the tests to check for errors detected by the monitor,

modifying the test files to have FileCheck [74] verify the
monitor’s output. Our results show that SIDEASAN cap-
tures all bugs detected by ASAN, demonstrating equivalent
effectiveness in bug detection.

During these tests and throughout the performance eval-
uation (§6.3), no erroneous alerts (false positives) were
reported.

6.2.2. Using Pointer Hashes
In contrast to LLVM-SCS, our approach relocates the

shadow stack to a separate monitoring process, significantly
enhancing security by isolating it from potential corruption
by attackers. SIDESTACK transmits a hash of the return
address to the monitor instead of the full address, which,
in theory, could be susceptible to exploitation through hash
collisions. To evaluate this risk, we used ROPgadget [75]
to extract all gadgets from the SPEC CPU2017 benchmark
binaries and executed all benchmarks with SIDESTACK,
collecting the return address hashes. We then compared
these hashes to identify any gadgets that shared a hash with
legitimate return addresses. No collisions were found across
all benchmarks, demonstrating the reliability and security of
the chosen hash function.

6.2.3. Detection Lag
The asynchronous nature of SIDECAR allows a com-

promised application a brief period to perform malicious
actions before termination by the monitor. To measure
this window, we conduct a micro-benchmark on the Intel
platform where an application repeatedly obtains the time
using gettimeofday and sends it to the monitor with
SidecarAppend. The monitor timestamps each received
message using gettimeofday and compares it with the sent
timestamp. We repeat this experiment with an increasing
number of consecutive messages to assess the impact of
bus congestion on the detection lag.

Figure 9 presents the results, showing the window ranges
from 1.9 to 2.4 milliseconds. Although not insignificant,
persistent changes to the system can be quickly rolled back.
Alternatively, the application could wait for the monitor
before executing risky operations, such as running a new
program or writing to system files.

8 64 128 192 256 320 384 448 512
Number of Writes

2.0

2.2

2.4

Av
g.

 L
ag

 W
in

do
w

(m
s)

Figure 9: Average lag in message reception and processing
by the monitor on the Intel platform.

pe
rlb

en
ch_

s
gcc

_s
mcf_

s

om
ne

tpp
_s

xa
lan

cbm
k_s

x2
64

_s

de
ep

sje
ng

_s
lee

la_
s

xz_
s

*ge
om

ea
n

ge
om

ea
n

htt
pd

ligh
ttp

d

mem
cac

he
d

bin
d

chr
om

ium

**g
eo

mea
n

0

20

40

60

80

100
 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

 X

LLVM-CFI FINEIBT SIDECFI LLVM-SCS SIDESTACK LLVM-ASAN SIDEASAN

Figure 10: Relative (%) performance comparison under SIDECAR policies and related approaches.
*Geomean including only benchmarks that executed successfully for LLVM-SCS.

**Geomean of LLVM-CFI and SIDECFI for real-world applications.

6.3. Performance

To address the third question, we assess SIDECAR de-
fenses on the Intel platform in terms of benchmark ap-
plication runtime overhead. For CFI, we compare against
LLVM-CFI and FineIBT [47], a recent approach utilizing
Intel’s CET processor extensions. FineIBT has demonstrated
superior performance to LLVM-CFI, albeit lacking incre-
mental deployment support, requiring recompilation of all
software components. For SCS, we compare against LLVM-
SCS1, while we compare SIDEASAN against vanilla ASAN.
We evaluate ASAN on multithreaded applications, using
the pbzip2 and pigz utilities. Finally, we evaluate against
GRIFFIN [37], a prior approach utilizing another feature
in Intel’s debugging extensions, execution tracing. GRIFFIN
combines CFI and SCS, so we concurrently apply both
defenses as well with SIDECAR. We compare it both in terms
of application latency and monitor resource consumption.
Setup. We utilized SPEC CPU2017 (SPECspeed Integer)
with the ”ref” workload to evaluate the runtime performance
of SIDECAR. For Httpd, we used two wrk [76] threads with
four connections each to generate HTTPS requests continu-
ously for 60 seconds, serving 100KB files filled with random
data. Similarly, for Lighttpd, we used two wrk threads with
four connections for 60 seconds, serving 100KB files. For
Memcached, we used two memtier [77] threads with four
connections each to continuously send 32B GET requests
over 60 seconds. For Bind, we used a single thread of
dnsperf [78] to query a specific URL address, using a sim-
ple URL to minimize string processing time and increase the
number of requests handled. Chromium officially supports
enabling Clang’s CFI checks on indirect and virtual calls
for intra-DSO checks only. To support cross-DSO checks,
we modified the GN [79] flags to pass custom build flags,
including -fsanitize-cfi-cross-dso, to ninja [80], and

1. Using LLVM-8, because x86-64 support has been discontinued in
more recent versions.

executed the Dromaeo benchmark from the Telemetry [81]
suite that ships with Chromium. All experiments were per-
formed 20 times, with averages calculated over an unin-
strumented baseline. Applications ran on the same host,
connected via the loopback (lo) virtual network interface
to minimize I/O latency. Each application was limited to a
single core, and benchmarks were configured to ensure full
core utilization to avoid I/O masking the overhead.

Figure 10 shows the relative performance against an
unprotected baseline, with error bars indicating the standard
deviations. The figure categorizes mechanisms visually with
a color scheme: forward-edge mechanisms in shades of
purple, backward-edge in green, and sanitizers in yellow.

6.3.1. Control-flow Integrity
On SPEC CPU2017, LLVM-CFI shows a geomean of

96.94%, with FineIBT at 94.26%, and SIDECFI at 91.20%.
SIDECFI’s performance is consistently on par with the
others, demonstrating its effectiveness across a wide range
of benchmarks. In real-world applications, SIDECFI outper-
forms LLVM-CFI in almost all tests, achieving a geomean
performance of 96.31% compared to LLVM-CFI’s 94.38%.
This improvement is largely due to SIDECFI replacing
the slow paths required for cross-DSO calls, which are
more prominent in real-world applications. For example, in
memcached, SIDECFI achieves 96.0%, significantly better
than LLVM-CFI’s 91.0%. In httpd, SIDECFI scores 94.0%,
again outperforming LLVM-CFI’s 93.0%.

6.3.2. Shadow Call Stack
For Shadow Call Stack mechanisms, benchmarks such as

perlbench s, omnetpp s, and leela s were excluded
from the geomean calculation due to violations caused by
unhandled optimizations like tail-calls. Additionally, real-
world applications httpd, memcached, and bind were ex-
cluded from the geomean calculation for similar LLVM-
SCS violations. SIDESTACK achieves a geomean of 87.27%,
while LLVM-SCS reaches 91.20%. In the remaining real-

world applications, SIDESTACK shows competitive perfor-
mance, with httpd achieving 87.0%, closely matching
LLVM-SCS’s 87.0%.

6.3.3. Address Sanitizer
ASAN shows a geomean performance of 49.91%, while

SIDEASAN exhibits a reduced performance at 15.11%.
This reduction is primarily due to the frequent message
communication with the monitor, which imposes a heavy
load on debugging extensions. The high message genera-
tion rates by ASAN cause hardware backpressure, resulting
in packet loss. Despite these challenges, SIDEASAN still
shows its strongest performance in memcached, where it
reaches 58.0%. For httpd, SIDEASAN achieves 42.0%,
while ASAN performs slightly better at 51.0%.

Additionally, we evaluated pbzip2 and pigz with our
multithreaded SIDEASAN implementation, chosen for their
high single-threaded overhead. Despite assigning threads to
separate cores, the overhead remained similar to single-
threaded performance. pbzip2 showed a consistent ≈9%
performance compared to the baseline, regardless of the
number of worker threads. Similarly, pigz maintained
≈15% performance, irrespective of the worker thread count.
This suggests that while the message load per thread de-
creases, the cumulative increase in message frequency with
more threads negates this advantage, maintaining high over-
head relative to the baseline without security measures.

6.3.4. Comparison with GRIFFIN
The SIDEGUARD approach integrates both forward

and backward-edge protections by concurrently employing
SIDECFI and SIDESTACK. Figure 11 compares the perfor-
mance of SIDEGUARD with GRIFFIN [37], another compre-
hensive CFI solution that protects both edges. Specifically,
we compare against GRIFFIN’s combination policy that en-
forces a fine-grained policy on forward edges and a shadow
stack on backward edges, using SPEC CPU2006 Integer
with the ”train” workload as they did. While SIDEGUARD
maintains a relative performance of 73%, it remains compet-
itive with GRIFFIN’s 86% (overhead figures from their paper
were converted for comparison). GRIFFIN employs Intel PT

pe
rlb

en
ch

bzi
p2 gcc mcf

go
bm

k

hm
mer

sje
ng

libq
ua

ntu
m
h2

64
ref

om
ne

tpp ast
ar

xa
lan

cbm
k

ge
om

ea
n

0

20

40

60

80

100

GRIFFIN SIDEGUARD

Figure 11: Relative (%) performance comparison under
GRIFFIN and SIDEGUARD.

and worker threads for control-flow reconstruction, result-
ing in high resource use in trace processing. In contrast,
SIDEGUARD’s trace only contains messages injected via
instrumentation, eliminating the need for complex decoding
of a large trace by worker threads.

Additionally, we compare monitor resource consumption
of SIDEGUARD and GRIFFIN by looking at the average
CPU usage for our SIDECFI and SIDESTACK monitors
running in parallel to the instrumented SPEC CPU2017
benchmarks. We utilized getrusage to obtain the user and
system CPU time consumed by the monitor process and
calculated utilization by dividing by the actual (wall) time
of the monitor, obtained with gettimeofday. The results,
as shown in Table 2, highlight the efficiency of SIDECFI
and a reasonable overhead on SIDESTACK.

TABLE 2: CPU Usage for SIDECFI and SIDESTACK mon-
itors in SPEC2006 benchmarks.

Benchmark CPU Usage
SIDECFI SIDESTACK

perlbench 97.02% 52.81%
bzip2 0.48% 6.31%
gcc 16.83% 49.85%
mcf 0.57% 1.53%
gobmk 16.42% 28.15%
hmmer 0.48% 0.50%
sjeng 18.14% 12.75%
libquantum 0.48% 4.66%
h264ref 44.96% 11.17%
omnetpp 99.93% 46.63%
astar 8.61% 8.15%
xalancbmk 98.96% 61.96%

geomean 8.36% 11.54%

As one would expect, CPU consumption depends on the
number of messages sent. SIDECFI consumes significantly
fewer CPU cycles than GRIFFIN, as the volume of mes-
sages, compared with execution tracing, is much smaller.
SIDESTACK shows a geomean of 8.36% for SIDECFI and
11.54% for SIDESTACK. Assuming these are combined
together to compare against GRIFFIN, the total CPU usage
does not surpass 20%. Comparing this to GRIFFIN, which
utilizes 6 CPU cores to decode and process the large amount
of data, we estimate that we outperform them by approx-
imately a factor of 30. This significant reduction in CPU
usage highlights the efficiency of our SIDEGUARD approach
compared to the more resource-intensive method employed
by GRIFFIN.

7. Related Work

7.1. Parallelizing Security Checks

Multiple prior works have adopted decoupling while
attempting to speed up security policy enforcement. We
classify them into two categories, which we discuss below.

Software. Such approaches [25], [26], [27], [28], [29] in-
strument applications using dynamic binary instrumentation
(DBI) frameworks like Pin [82] or DynamoRIO [83] to
inject code that will log runtime data to shared buffers
that can be accessed by separate monitor threads or pro-
cesses. Some works have focused on expensive dynamic
analyses like dynamic taint tracking [25], [26], [27], while
others have aimed to provide a more general framework
for dynamic analysis [28], [29], sacrificing performance for
adaptability. Despite offering acceleration to applications, at
least compared to inlined approaches [84], their overheads
remain high for regular use in production (>x2), which is
due to the use of DBI and the volumes of data that need to be
transferred to monitors. More importantly, the use of shared
buffers to transfer data to the monitor poses the risk of
tampering by an adversary before the checks are performed.
Hardware. These approaches [34], [32], [35], [85], [30],
[31], [48], [86], [33] instead propose novel processor de-
signs that automatically log data, while executing a process,
to allow for security checks to be applied in parallel by
specialized processing cores [34] or a monitor processes
running in general-purpose cores [35], [30], [31], [48],
[33]. Some of these approaches [34], [32], [30], [31], [33]
are even configurable and can support different dynamic
analyses. Support for multithreaded applications has also
been explored in the past [87], [88], [89], with these works
facing a number of challenges including inter-thread data de-
pendencies, unmonitored operating system activity, synchro-
nization overheads and effectively sharing communication
channels between multiple threads. In general, hardware-
based methods typically incur lower overheads without the
risk of tampering, as data are logged into memory that is
isolated from the application. However, their integration into
high-performance processors is challenging and we have not
witnessed their adoption by manufacturers yet.

7.2. Leveraging Debugging Extensions.

Execution Tracing. Prior research has harnessed execution
tracing capabilities for offloading security tasks like control-
flow integrity and attestation [36], [37], [38], [39], [40],
[41], [42]. However, even though the processor can log these
traces with minimal overhead (<4%), the data produced are
voluminous and require significant processing resources to
analyze. As such, additional overhead is incurred because
the core’s execution needs to be stalled to allow for the
trace to be processed, or multiple cores need to be reserved
for protecting a single application thread. Hence, using
execution tracing for security checks is not practical yet,
unless dedicated hardware is introduced that can efficiently
process the trace data. Moreover, it can only support policies
related to control flow.
Software-Driven Logging. The use of the PTWRITE in-
struction has been underexplored, with only a few works
utilizing it so far. DTrace [90] employs an emulated version
of PTWRITE for fine-grained data integrity enforcement.
Another notable use is found in the work by Lu and Hu [91],

which employs PTWRITE to log function pointers for refin-
ing indirect-call targets through Multi-Layer Type Analysis
(MLTA). Additionally, Execution Reconstruction (ER) [92]
uses PTWRITE to record data values, identified by key data
value selection, enabling the accurate reproduction of pro-
duction failures. Despite these uses, the full capabilities and
limits of this extension have not been thoroughly explored
and challenged in existing research.

8. Conclusion

In this work, we introduce SIDECAR, leveraging and
repurposing processor debugging extensions to create se-
cure, append-only channels for offloading security policies
in processors. SIDECAR supports a diverse array of policies,
demonstrated through the development of forward-edge and
backward-edge CFI implementations and an address sani-
tizer. We rigorously validated these implementations using
the RIPE suite and LLVM tests, ensuring their robustness
and effectiveness. Performance on SPEC CPU benchmarks
indicates average overheads of 3-20% for our CFI policies,
with SIDECAR-based CFI+SCS being 30 times more effi-
cient than prior work.

Notably, in DSO-heavy applications like Apache Httpd,
Bind, and Chromium SIDECAR’s forward-edge CFI out-
performs LLVM’s implementation due to offloading the
expensive slow path checks. This highlights the potential of
utilizing existing debugging hardware for advanced security
solutions and underscores the need for future enhancements
in such extensions for more sophisticated security mech-
anisms. Overall, SIDECAR’s innovative approach offers a
compelling path forward for enhancing security with mini-
mal performance overhead.

Availability

The prototype implementation of SIDECAR is available
at: https://github.com/stevens-s3lab/sidecar

Acknowledgments

We thank the anonymous reviewers for their valuable
comments. This work was supported by DARPA, NSF, and
CISCO under awards D21AP10116-00, CNS-2213727, and
71858473. Any opinions, findings, and conclusions or rec-
ommendations expressed herein are those of the authors and
do not necessarily reflect the views of the US government,
DARPA, NSF, or CISCO.

References

[1] MITRE, “CWE top 25 most dangerous software weaknesses,” https:
//cwe.mitre.org/top25/, 2023.

[2] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in IEEE Symposium on Security and Privacy (S&P), 2013,
pp. 48–62.

https://github.com/stevens-s3lab/sidecar
https://cwe.mitre.org/top25/
https://cwe.mitre.org/top25/

[3] V. Van der Veen, L. Cavallaro, and H. Bos, “Memory errors: The
past, the present, and the future,” in Proceedings of the International
Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2012, pp. 86–106.

[4] N. Carlini and D. Wagner, “{ROP} is still dangerous: Breaking mod-
ern defenses,” in Proceedings of the USENIX Security Symposium,
2014, pp. 385–399.

[5] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
ACM Conference on Computer and Communications Security (CCS),
2007, pp. 552–561.

[6] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“{Control-Flow} bending: On the effectiveness of {Control-Flow}
integrity,” in Proceedings of the USENIX Security Symposium, 2015,
pp. 161–176.

[7] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-Oriented
Programming: A new class of code-reuse attack,” in Proceedings of
the ACM Asia Symposium on Information, Computer and Communi-
cations Security (ASIACCS), 2011, pp. 30–40.

[8] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
ACM Conference on Computer and Communications Security (CCS),
2010, pp. 559–572.

[9] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out
of control: Overcoming control-flow integrity,” in Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2014, pp. 575–589.

[10] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit Object-Oriented Programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in Proceedings
of the IEEE Symposium on Security and Privacy (S&P), 2015, pp.
745–762.

[11] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter, “Breaking the memory secrecy assumption,” in Proc. of the
European Workshop on System Security (EUROSEC), 2009, p. 1–8.

[12] Y. Li, B. Dolan-Gavitt, S. Weber, and J. Cappos, “Lock-in-Pop:
Securing privileged operating system kernels by keeping on the beaten
path,” in USENIX Annual Technical Conference (ATC), 2017, pp. 1–
13.

[13] D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “TaintEraser:
Protecting sensitive data leaks using application-level taint tracking,”
in SIGOPS Oper. Syst. Rev., 2011.

[14] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dressSanitizer: A fast address sanity checker,” in USENIX Annual
Technical Conference, Jun. 2012, pp. 309–318.

[15] I. Haller, J. Yuseok, H. Peng, M. Payer, C. Giuffrida, H. Bos, and
E. van der Kouwe, “TypeSan: Practical Type Confusion Detection,”
in CCS, Oct. 2016.

[16] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow in-
tegrity in GCC & LLVM,” in Proc. of the USENIX Security Sympo-
sium, 2014, pp. 941–955.

[17] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 13, no. 1,
pp. 1–40, 2009.

[18] N. Nethercote, “Dynamic binary analysis and instrumentation.”
[Online]. Available: http://valgrind.org

[19] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and
T. Reps, “ConSeq: Detecting concurrency bugs through sequential
errors,” in Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS), 2011, p. 251–264.

[20] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost
of shadow stacks and stack canaries,” in Proc. of the 10th ACM
Symposium on Information, Computer and Communications Security
(AsiaCCS), 2015, p. 555–566.

[21] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula,
“XFI: Software guards for system address spaces,” in USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI),
2006, pp. 75–88.

[22] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Poly-
chronakis, “xMP: Selective memory protection for kernel and user
space,” in Proc. of the IEEE Symposium on Security and Privacy
(S&P), 2020, pp. 563–577.

[23] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proc. of the ACM Symposium on
Operating Systems Principles (SOSP), 1993, p. 203–216.

[24] Intel, “A technical look at Intel’s control-flow enforcement technol-
ogy,” https://www.intel.com/content/www/us/en/developer/articles/t
echnical/technical-look-control-flow-enforcement-technology.html,
2020.

[25] K. Jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis, “Shad-
owReplica: Efficient parallelization of dynamic data flow tracking,”
in Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS), November 2013, pp. 235–246.

[26] J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu, “TaintPipe:
Pipelined symbolic taint analysis,” in USENIX Security Symposium.
USENIX Association, Aug. 2015, pp. 65–80. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity15/technical-sessi
ons/presentation/ming

[27] J. Ming, D. Wu, J. Wang, G. Xiao, and P. Liu, “StraightTaint: De-
coupled offline symbolic taint analysis,” in IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2016, pp.
308–319.

[28] J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKinley, “A concur-
rent dynamic analysis framework for multi-core hardware,” in Proc.
of OOPSLA, 2009.

[29] Q. Zhao, I. Cutcutache, and W. Wong, “PiPA: pipelined profiling and
analysis on multi-core systems,” in Proc. of CGO, 2008.

[30] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C.
Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos,
“Flexible hardware acceleration for instruction-grain program moni-
toring,” in 2008 International Symposium on Computer Architecture,
2008, pp. 377–388.

[31] O. Ruwase, S. Chen, P. B. Gibbons, and T. C. Mowry, “Decou-
pled lifeguards: Enabling path optimizations for dynamic correctness
checking tools,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2010,
pp. 25–35.

[32] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh,
“Flexible and efficient instruction-grained run-time monitoring using
on-chip reconfigurable fabric,” in Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2010, pp. 137–148.

[33] D. Lo, T. Chen, M. Ismail, and G. E. Suh, “Run-time monitoring
with adjustable overhead using dataflow-guided filtering,” in IEEE
International Symposium on High Performance Computer Architec-
ture (HPCA), 2015, pp. 662–674.

[34] S. Ainsworth and T. M. Jones, “The guardian council: Parallel pro-
grammable hardware security,” in Proc. of the International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020, pp. 1277–1293.

[35] D. D. Chen, W. S. Lim, M. Bakhshalipour, P. B. Gibbons, J. C.
Hoe, and B. Parno, “HerQules: Securing programs via hardware-
enforced message queues,” in Proceedings of the ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2021, p. 773–788.

http://valgrind.org
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ming
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ming

[36] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “PT-CFI: Transparent
backward-edge control flow violation detection using Intel Processor
Trace,” in Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, 2017, pp. 173–184.

[37] X. Ge, W. Cui, and T. Jaeger, “GRIFFIN: Guarding control flows
using intel processor trace,” ACM SIGPLAN Notices, vol. 52, no. 4,
pp. 585–598, 2017.

[38] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan, “Trans-
parent and efficient CFI enforcement with intel processor trace,” in
2017 IEEE International Symposium on High performance computer
architecture (HPCA). IEEE, 2017, pp. 529–540.

[39] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
protection of Path-Sensitive control security,” in Proceedings of the
USENIX Security Symposium, 2017, pp. 131–148.

[40] O. Arias, D. Sullivan, H. Shan, and Y. Jin, “Lahel: Lightweight
attestation hardening embedded devices using macrocells,” in 2020
IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). IEEE, 2020, pp. 305–315.

[41] M. A. Wahab, P. Cotret, M. N. Allah, G. Hiet, V. Lapotre, and
G. Gogniat, “Armhex: A hardware extension for dift on arm-based
socs,” in 2017 27th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2017, pp. 1–7.

[42] L. Feng, J. Huang, J. Hu, and A. Reddy, “Fastcfi: Real-time control-
flow integrity using fpga without code instrumentation,” ACM Trans-
actions on Design Automation of Electronic Systems (TODAES),
vol. 26, no. 5, pp. 1–39, 2021.

[43] “lit - LLVM Integrated Tester.” https://llvm.org/docs/CommandGui
de/lit.html.

[44] Hubert Rosier, “RIPE64. National University of Singapore.” https:
//github.com/hrosier/ripe64, 2019.

[45] The Clang Team, “Control flow integrity,” Clang 12 documentation
– https://releases.llvm.org/12.0.0/tools/clang/docs/ControlFlowIntegri
ty.html.

[46] “Shadow Call Stack,” https://clang.llvm.org/docs/ShadowCallStack.
html.

[47] A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and
V. P. Kemerlis, “FineIBT: Fine-grain control-flow enforcement with
indirect branch tracking,” in International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), Oct. 2023.

[48] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic, “Heapmon:
A helper-thread approach to programmable, automatic, and low-
overhead memory bug detection,” IBM Journal of Research and
Development, vol. 50, no. 2.3, pp. 261–275, 2006.

[49] James Reinders (Intel), “Processor tracing,” Sep 2013, https://softwa
re.intel.com/en-us/blogs/2013/09/18/processor-tracing.

[50] ARM, “Better trace for better software,” https://developer.arm.com/
-/media/Arm%20Developer%20Community/PDF/Better Trace for
Better Software - CoreSight STM with LTTng - 19th October 2
010.pdf, 2010.

[51] B. C. Strong, J. W. Brandt, P. Lachner, A. Kleen, J. B. Crossland,
and T. Opferman, “Software-initiated trace integrated with hardware
trace,” Dec. 29 2016, uS Patent App. 14/751,759.

[52] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2005, p. 340–353.

[53] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,”
in Proceedings of the USENIX Security Symposium, Aug. 2013, pp.
337–352.

[54] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2014, p. 577–587.

[55] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and randomiza-
tion for binary executables,” in Proceedings of the IEEE Symposium
on Security and Privacy, 2013.

[56] P. Zieris and J. Horsch, “A leak-resilient dual stack scheme for
backward-edge control-flow integrity,” in Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, 2018,
pp. 369–380.

[57] E. Göktaş, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Por-
tokalidis, C. Giuffrida, and H. Bos, “Undermining entropy-based
information hiding (and what to do about it),” in Proceedings of the
USENIX Security Symposium, August 2016, pp. 105–119.

[58] A. Oikonomopoulos, B. Kollenda, C. Giuffrida, E. Athanasopoulos,
E. Göktaş, G. Portokalidis, H. Bos, and R. Gawlik, “Bypassing clang’s
safestack for fun and profit,” in Black Hat Europe, November 2016.
[Online]. Available: https://www.blackhat.com/eu-16/briefings/sched
ule/index.html#bypassing-clangs-safestack-for-fun-and-profit-4965

[59] I. Corporation, “Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual,” https://www.intel.com/content/www/us/en/develope
r/articles/technical/intel-sdm.html, 2023.

[60] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++ : Com-
bining incremental steps of fuzzing research,” in USENIX Workshop
on Offensive Technologies (WOOT), Aug. 2020.

[61] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P.
Kemerlis, “kRˆX: Comprehensive Kernel Protection against Just-In-
Time Code Reuse,” in European Conference on Computer Systems
(EuroSys), 2017, pp. 420–436.

[62] LWN.net, “x86 NX support,” Jun. 2004. [Online]. Available:
https://lwn.net/Articles/87814/

[63] OpenBSD, “i386 WˆX,” Apr. 2003. [Online]. Available: https:
//marc.info/?l=openbsd-misc&m=105056000801065

[64] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer
systems,” in Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS), 1997, pp. 67–72.

[65] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic adaptive
detection and prevention of Buffer-Overflow attacks,” in Proceedings
of the USENIX Security Symposium, Jan. 1998.

[66] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis,
“Compiler-assisted code randomization,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2018, pp. 461–477.

[67] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Auto-
mated software diversity,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2014, pp. 276–291.

[68] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake,
X. Yuan, P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello,
“Shuffler: Fast and deployable continuous code Re-Randomization,”
in Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Nov. 2016, pp. 367–382.

[69] The kernel development community, “Perf ring buffer,” https://docs
.kernel.org/userspace-api/perf ring buffer.html.

[70] Linaro, “OpenCSD: An open source CoreSight trace decode library,”
https://github.com/Linaro/OpenCSD, 2023.

[71] “Intel Processor Trace Decoder Library,” https://github.com/intel/lib
ipt.

[72] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“Ripe: Runtime intrusion prevention evaluator,” in Proceedings of the
27th Annual Computer Security Applications Conference, 2011, pp.
41–50.

[73] “Leak Sanitizer,” https://github.com/google/sanitizers/wiki/AddressS
anitizerLeakSanitizer.

[74] “FileCheck - Flexible pattern matching file verifier.” https://llvm.org
/docs/CommandGuide/FileCheck.html.

https://llvm.org/docs/CommandGuide/lit.html
https://llvm.org/docs/CommandGuide/lit.html
https://github.com/hrosier/ripe64
https://github.com/hrosier/ripe64
https://releases.llvm.org/12.0.0/tools/clang/docs/ControlFlowIntegrity.html
https://releases.llvm.org/12.0.0/tools/clang/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Better_Trace_for_Better_Software_-_CoreSight_STM_with_LTTng_-_19th_October_2010.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Better_Trace_for_Better_Software_-_CoreSight_STM_with_LTTng_-_19th_October_2010.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Better_Trace_for_Better_Software_-_CoreSight_STM_with_LTTng_-_19th_October_2010.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Better_Trace_for_Better_Software_-_CoreSight_STM_with_LTTng_-_19th_October_2010.pdf
https://www.blackhat.com/eu-16/briefings/schedule/index.html#bypassing-clangs-safestack-for-fun-and-profit-4965
https://www.blackhat.com/eu-16/briefings/schedule/index.html#bypassing-clangs-safestack-for-fun-and-profit-4965
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://lwn.net/Articles/87814/
https://marc.info/?l=openbsd-misc&m=105056000801065
https://marc.info/?l=openbsd-misc&m=105056000801065
https://docs.kernel.org/userspace-api/perf_ring_buffer.html
https://docs.kernel.org/userspace-api/perf_ring_buffer.html
https://github.com/Linaro/OpenCSD
https://github.com/intel/libipt
https://github.com/intel/libipt
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://llvm.org/docs/CommandGuide/FileCheck.html
https://llvm.org/docs/CommandGuide/FileCheck.html

[75] J. Salwan, “ROPgadget,” https://github.com/JonathanSalwan/ROPgad
get.

[76] “wrk - a HTTP benchmarking tool.” https://github.com/wg/wrk,
2021.

[77] “Memtier Benchmark,” https://github.com/RedisLabs/memtier bench
mark, 2020.

[78] “DNSPerf - DNS Performance Analytics and Comparison.” https:
//www.dnsperf.com/.

[79] “GN - a meta-build system that generates build files for ninja.” https:
//gn.googlesource.com/gn.

[80] “Ninja: a small build system with a focus on speed.” https://github.c
om/ninja-build/ninja.

[81] “Telemetry: Chrome’s performance testing framework.” https://chro
mium.googlesource.com/catapult/+/HEAD/telemetry/README.md.

[82] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” Acm sigplan
notices, vol. 40, no. 6, pp. 190–200, 2005.

[83] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic
instrumentation,” in Proceedings of the ACM SIGPLAN/SIGOPS Con-
ference on Virtual Execution Environments (VEE), 2012, p. 133–144.

[84] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:
Practical dynamic data flow tracking for commodity systems,” in
Proceedings of the ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE), March 2012, pp. 121–132.

[85] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. Mowry,
R. Teodorescu, A. Ailamaki, L. Fix, G. R. Ganger, B. Lin et al.,
“Log-based architectures for general-purpose monitoring of deployed
code,” in Proceedings of the 1st workshop on Architectural and system
support for improving software dependability, 2006, pp. 63–65.

[86] Q. Zeng, D. Wu, and P. Liu, “Cruiser: concurrent heap buffer overflow
monitoring using lock-free data structures,” ACM SIGPLAN Notices,
vol. 46, no. 6, pp. 367–377, 2011.

[87] E. Vlachos, M. L. Goodstein, M. A. Kozuch, S. Chen, B. Falsafi,
P. B. Gibbons, and T. C. Mowry, “Paralog: Enabling and accelerating
online parallel monitoring of multithreaded applications,” in Proceed-
ings of the fifteenth International Conference on Architectural support
for programming languages and operating systems, 2010, pp. 271–
284.

[88] M. L. Goodstein, E. Vlachos, S. Chen, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Butterfly analysis: Adapting dataflow analysis to
dynamic parallel monitoring,” ACM SIGARCH Computer Architecture
News, vol. 38, no. 1, pp. 257–270, 2010.

[89] M. L. Goodstein, S. Chen, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “Chrysalis analysis: Incorporating synchronization arcs in
dataflow-analysis-based parallel monitoring,” in Proceedings of the
21st international conference on Parallel architectures and compila-
tion techniques, 2012, pp. 201–212.

[90] X. Wang, F. Huang, and H. Chen, “Dtrace: Fine-grained and efficient
data integrity checking with hardware instruction tracing,” Cyberse-
curity, vol. 2, no. 1, pp. 1–15, 2019.

[91] K. Lu and H. Hu, “Where does it go? refining indirect-call targets with
multi-layer type analysis,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1867–1881.

[92] G. Zuo, J. Ma, A. Quinn, P. Bhatotia, P. Fonseca, and B. Kasikci, “Ex-
ecution reconstruction: Harnessing failure reoccurrences for failure re-
production,” in Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
2021, pp. 1155–1170.

https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://github.com/wg/wrk
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://www.dnsperf.com/
https://www.dnsperf.com/
https://gn.googlesource.com/gn
https://gn.googlesource.com/gn
https://github.com/ninja-build/ninja
https://github.com/ninja-build/ninja
https://chromium.googlesource.com/catapult/+/HEAD/telemetry/README.md
https://chromium.googlesource.com/catapult/+/HEAD/telemetry/README.md

	Introduction
	Offloading Security Checks with Sidecar
	Overarching Concept
	Using Processor Debugging Extensions
	Benefits

	Threat Model
	Sidecar Design and Implementation
	Application Interface
	Trace Collection
	Monitor Interface

	Redesigning Sanitizers for Sidecar
	SideCFI: Forward-Edge CFI
	SideStack: Shadow Call Stack
	SideASan: Address Sanitizer

	Evaluation
	SDL on Intel vs. Arm
	Security and Correctness
	Detection Capabilities
	Using Pointer Hashes
	Detection Lag

	Performance
	Control-flow Integrity
	Shadow Call Stack
	Address Sanitizer
	Comparison with Griffin

	Related Work
	Parallelizing Security Checks
	Leveraging Debugging Extensions.

	Conclusion
	References

